

Are there physical limits on machine learning?

Dr. Fanglin Bao baofanglin@westlake.edu.cn Nov. 15, 2024, Beijing

Errors in Al

Applications of AI & Why Does Error Matter

Error bound: problem setup

Information Theory & Photon Statistics

Error bound: state of the art

Mutual Information & Quantum Chernoff Bound

Physical limits on hypothesis testing (classification)

Exact Error Probability & Asymptotic Behavior & Symmetries

Physical limits on parameter estimation (regression)

Correspondence Problem & Position Estimation

AI for Theoretical Sciences

(a) Quantum state classification(b) Classification of classical data(c) Quantum channel discrimination

Embedding circuit $x \mapsto \rho(x)$ Decision via POVM Π_c

(d) Symbolic regression (AI physicist, Data -> Eq.)
(e) Symbolic mathematics (Eq. -> Eq.)
(f) Conjecture generation and formal proof

Al could be wrong!

L. Banchi, et al, PRX QUANTUM 2,040321(2021)

Al could be wrong

Muffin or Chihuahua? (False vs. True theory)

Error bound

When errors occur, is it because the model is not well trained, or physical laws and resources set a fundamental limit?

Outline

Errors in Al

Applications of AI & Why Does Error Matter

Error bound: problem setup

Information Theory & Photon Statistics

Error bound: state of the art

Mutual Information & Quantum Chernoff Bound

Physical limits on hypothesis testing (classification)

Exact Error Probability & Asymptotic Behavior & Symmetries

Physical limits on parameter estimation (regression)

Correspondence Problem & Position Estimation

Problem setup: information bottleneck

G. E. Hinton, et al, *Science* **313**,504-507(2006) for data representation

R. Shwartz, et al, *arXiv:*1703.00810 (2017) for information bottleneck

Problem setup: data processing inequality

Computing (data processing) does not increase information. (not just mutual information, but also Fisher information)

Problem setup: data processing inequality

Garbage in, garbage out

- It highlights the importance of data quality against dataset size
- In machine perception, measurement optimization is essential.

I. Shumailov, et al, Nature 631, 755–759 (2024)

Problem setup: wave-particle duality

in the unit of 'photon' ...

Problem setup: photon statistics

0.05

0

0

Super-Poissonian light

 $\Delta n^2 > \langle n
angle$

Photon number n

10

15

5

$$\rho = \int \frac{1}{\pi \langle n \rangle} e^{-|\alpha|^2 / \langle n \rangle} |\alpha\rangle \langle \alpha | \mathrm{d}^2 \alpha$$

 $p(n) = \langle n | \rho | n \rangle = \frac{\langle n \rangle^n}{(\langle n \rangle + 1)^{n+1}}$

Sub-Poissonian light $\Delta n^2 < \langle n
angle$

 $\hat{n}|n'\rangle = n'|n'\rangle$

$$p(n) = \delta_{nn}$$

11/42

Problem setup: imaging

Ultrafast and ultrasensitive camera

10K photons

100K photons

1M photons

Each photon adds a bright dot in the images (512 * 512)

Problem setup: a comprehensive model of sensing

- T: Temperature of the target α
- e : Spectral emissivity of the target α
- **X** : Geometric texture of the target α
- \mathbf{z} : Distance of the target $\boldsymbol{\alpha}$
- S: Heat signal
- ν : Wave number
- B : Blackbody radiation
- V : Thermal lighting factor
- c : Speed of light in vacuum
- $\boldsymbol{\lambda}:$ Mean photon number in coherent time
- τ_c : Coherence time
- δv : Ultra fine bandwidth
- f : Focal length
- D : Aperture diameter
- A_p : Pixel area
- t : Measurement time
- η^o : Optics efficiency
- W : Number of bands/filters
- K_v : Self emission of the sensor might be zero if no back reflection
- Transmittance curve
 - becomes δ_{qv} when using prisms etc.
- R_{ν} : Responsivity/quantum efficiency
- $\boldsymbol{\xi}$: Electronic noise with mean $\boldsymbol{\bar{\xi}}$ and std $\boldsymbol{\sigma}$
- \mathcal{P}_{qv} : Photon statistics
- C_{n+a-1}^{n} : Binomial coefficient

Problem statement

For a given system (ρ_v) and a given task ($y = \{$ 'Cat' / 'Dog', distance $\}$),

- What's the distance metric to depict the information bottleneck, subject to certain symmetries (translation, rotation, scaling, etc.)?
- > What's the structure of the distance metric (how is it related to physical parameters)?
- > How many photons are needed in the measurement with a given sensor?
- > What's the optimal measurement requiring the least photons?

(1) With the physical limit, we can quantify/score a specific model for a given task.

Training a chatbot can use as much electricity as a neighborhood consumes in a year.

(2) We can optimize measurement to improve AI.

Photonic information vs. electronic information

(3) We can design public policies and industrial standards for machine perception.

My self-driving Car Can be as fast as a rocket.

No bragging. That's against (physics) laws!

Outline

Errors in Al

Applications of AI & Why Does Error Matter

Error bound: problem setup

Information Theory & Photon Statistics

Error bound: state of the art

Mutual Information & Quantum Chernoff Bound

Physical limits on hypothesis testing (classification)

Exact Error Probability & Asymptotic Behavior & Symmetries

Physical limits on parameter estimation (regression)

Correspondence Problem & Position Estimation

Experiment: classification of two spectra

Experiment: convergent accuracy

Experimental bound of accuracy

Shannon's information about the object $I = \left(-\log\frac{1}{2}\right) - \left(-\log P_{acc}\right)$

$$P_{acc} = \frac{\Pr(0|0) + \Pr(1|1)}{2}$$

Mutual information has no order information

Example

H(X) = H(Z) = I(X;Z) = 1 bit

Curve classification

Hypothesis states

- > Null hypothesis H0, $\rho_0^{\otimes N}$
- > Alternative hypothesis H1, $\rho_1^{\otimes N}$

Test operator

 $\Pi: \mathbb{C}^{N \ast W} \to \{\mathbf{0}, \mathbf{1}\}$

Helstrom bound on error probability

$$P_{err} = \pi_0 * tr[\rho_0^{\otimes N} \cdot \Pi] + \pi_1 * tr[\rho_1^{\otimes N} \cdot (\mathbb{I} - \Pi)]$$
$$= \frac{1 - tr\sqrt{\rho^{\dagger}\rho}}{2}, \qquad \rho = \pi_0 \rho_0^{\otimes N} - \pi_1 \rho_1^{\otimes N}$$

Hilbert space $\sim \chi^{N*W}$

 χ : number of possible states~ 256W: number of channels~ 100-1MN: number of measurements> 100

22/4

Quantum Chernoff bound

$$P_{err} \sim e^{-N \cdot \xi}, \qquad \xi = -\log\left[\min_{0 \le s \le 1} tr\left(\rho_0^{1-s}\rho_1^s\right)\right]$$

Hilbert space $\sim \chi^W$

Quantum Chernoff bound

Opt. Lett. 49, 750-753 (2024)

23/42

Quantum Chernoff bound

I~N curve for CHANNEL5-7, gamma=0

Those metrics for the information bottleneck are:

- > Only asymptotically/qualitatively correct
- > Not a distance metric invariant to symmetric transformations

> Lacking the structure of the distance metric

(no physics parameters about measurement)

An exact theory of the upper bound is critical

- For searching for the quantum-optimal measurement.
- To develop the information theory of machine learning.

Outline

Errors in Al

Applications of AI & Why Does Error Matter

Error bound: problem setup

Information Theory & Photon Statistics

Error bound: state of the art

Mutual Information & Quantum Chernoff Bound

Physical limits on hypothesis testing (classification)

Exact Error Probability & Asymptotic Behavior & Symmetries

Physical limits on parameter estimation (regression)

Correspondence Problem & Position Estimation

Fock space is the eigenspace for a given channel (e.g., pixel).

> Photon number is a variable but not fixed.

> Physics laws determine the distribution.

$$P_{err} = \pi_0 * \Pr(E|H_0) + \pi_1 * \Pr(E^c|H_1) \\ = \pi_1 + \pi_0 \Pr(E|H_0) - \pi_1 \Pr(E|H_1)$$

is minimized when

 $E = \left\{ \vec{\boldsymbol{n}} | \pi_0 \operatorname{Pr}\left(\vec{\boldsymbol{n}} | H_0\right) - \pi_1 \operatorname{Pr}\left(\vec{\boldsymbol{n}} | H_1\right) < \mathbf{0} \right\}$

27/42

Theoretical bound of accuracy

- An exact information-theoretic bound of ML
- > Machine learning saturates the bound

Theoretical bound of accuracy

Unpublished data

Mix the signals of two hypotheses with a mixture fraction, and then estimate the fraction.

 $\vec{\lambda} = (1 - \eta)\vec{\lambda}_0 + \eta\vec{\lambda}_1$ $\vec{\lambda}_j = \vec{e}_j * \vec{B}(T) \text{ symmetry}$ $p(\vec{n}; \eta) = \prod_{k=1}^{W} \frac{\lambda_k^{n_k}}{(\lambda_k + 1)^{n_k + 1}} \text{ Physics parameters}$

The uncertainty of estimating the Mean of a Gaussian distribution is given by its Variance (i.e., the inverse of its Fisher information matrix).

$$P_{acc} = \Pr(\eta < 1/2) = \int_{-\infty}^{1/2} \mathcal{N}(\eta; 0, 1/J_{\eta}) d\eta$$
$$P_{err} = 1 - P_{acc}$$

Semantic distance

$$d_0 = 1/2\sigma_0 \operatorname{with} \sigma_0^2 = [1/J^0]_{gg}$$

Single-photon Fisher information matrix:

$$J_{ij}^{0} = \int \frac{(\partial_{i} p_{\alpha \nu})(\partial_{j} p_{\alpha \nu})}{p_{\alpha \nu}} \mathrm{d}v$$

Fisher information matrix:

 $J_{ij} = N J_{ij}^0 / (1 + \gamma) \qquad i, j \in \{g, T\}$

Shannon information:

$$I = \log_2 \left[1 + \operatorname{erf} \left[\sqrt{\frac{N d_0^2}{2(1+\gamma)}} \right] \right],$$

Statistical distance with structures

Data processing inequality: Fisher information

> Markov chain

Sensing
Y
Sensing
X
Computing
Z
Estimator

$$\tilde{Y}(X \text{ or } Z)$$

 $p(z|y) = \int p(z|x) * p(x|y) dx, \quad \partial_y p(z|y) = \int p(z|x) * \partial_y p(x|y) dx$

$$J_{y}^{z} = \int \frac{\left[\partial_{y} p(z|y)\right]^{2}}{p(z|y)} dz = \int \frac{\left[\int p(z|x) * \partial_{y} p(x|y) dx\right]^{2}}{\int p(z|x) * p(x|y) dx} dz$$
$$\leq \int \int p(z|x) * \frac{\left[\partial_{y} p(x|y)\right]^{2}}{p(x|y)} dx dz = \int \frac{\left[\partial_{y} p(x|y)\right]^{2}}{p(x|y)} dx$$
$$= J_{y}^{x}$$

Outline

Errors in Al

Applications of AI & Why Does Error Matter

Error bound: problem setup

Information Theory & Photon Statistics

Error bound: state of the art

Mutual Information & Quantum Chernoff Bound

Physical limits on hypothesis testing (classification)

Exact Error Probability & Asymptotic Behavior & Symmetries

Physical limits on parameter estimation (regression)

Correspondence Problem & Position Estimation

Binocular stereovision

How many photons do we need to measure the distance within a given accuracy?...

(What is the fundamental limit of disparity error?)

The correspondence problem

For a given point in the actual left image, find the corresponding point in the actual right image.

--- The correspondence problem in computer vision

Estimation theory

We re-interpret the correspondence problem in computer vision as a position-estimation problem in estimation theory:

For a given point in the actual image, find the corresponding point in the ideal image.

F. Bao, et al, "Heat-assisted detection and ranging," *Nature* **619**, 743–748 (2023) (Cover article)

Correspondence uncertainty

Depth resolution:

 $\sqrt{N}\delta z \ge \frac{z^2}{bf}\sqrt{2(1+\gamma)(\sigma_{\rm c}^2+\sigma_{\rm d}^2)},$

- δz : ranging error
- *N*: photon number
- z: distance
- *b*: baseline
- *f*: focal length
- γ : Electronic noise power over shot-noise power
- σ_d : photonic diffraction uncertainty (width of PSF)
- σ_c : photonic correspondence uncertainty

$$\sigma_c = \sqrt{1/J_x^0}$$
, J_x^0 is the single-photon FI

 $J_x^0 = \iint_{\Omega} \frac{(\partial_x p_{x\nu})^2}{p_{x\nu}} \,\mathrm{d}s \mathrm{d}\nu \qquad p_\lambda(x,\nu) \equiv \lambda_{x\nu} / \iint_{\Omega} \lambda_{x\nu} \,\mathrm{d}s \mathrm{d}\nu$

x, y: Image coordinates v: Wave number γ : Normalized electronic noise power δz : ranging error δd : disparity error Ω : window domain

F. Bao, et al, "Heat-assisted detection and ranging," *Nature* **619**, 743–748 (2023) (Cover article)

Physical limit on depth estimation

Machine perception obeys the information-theoretic bound...

Machine perception experiment

- 1. Using stereo matching to derive the depth information (d, e, f).
- Comparing with the ground truth to get error statistics along the white arrow (blue dots in insets)

Information theory

$$\sqrt{N}\delta z \ge \frac{z^2}{bf}\sqrt{2(1+\gamma)(\sigma_{\rm c}^2+\sigma_{\rm d}^2)},$$

(red curves in insets)

- **Physical limits** Information bottleneck in physics parameters invariant to transformations
- **Physical limits on classification** Semantic distance
- **Physical limits on depth estimation** Correspondence uncertainty

Generalization to the quantum case, (measurement optimization) Multi-label classification, SIFT operator, Language problem, ...