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AI for Theoretical Sciences

(a) Quantum state classification

(b) Classification of classical data

(c) Quantum channel discrimination

…

L. Banchi, et al, PRX QUANTUM 2,040321(2021)

AI could be 

wrong!

(d) Symbolic regression (AI physicist, Data -> Eq.)

(e) Symbolic mathematics (Eq. -> Eq.)

(f) Conjecture generation and formal proof

…

Terence Tao
Fields Medalist
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AI could be wrong

Muffin or Chihuahua?

(False vs. True theory)
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Error bound

Epoch

Training loss

Validation loss

When errors occur, is it because the model is not well trained, or 

physical laws and resources set a fundamental limit?

Scaling law?

Exoplanet searching

Object classification

Vowel recognition

Electronic skin ...
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Problem setup: information bottleneck

Sensing Computing

𝜌𝑦 𝑝(𝑥|𝑦) = 𝑡𝑟(𝜌𝑦𝑀𝑥)

𝑌 𝑍𝑋

G. E. Hinton, et al, Science 313,504-507(2006)

for data representation

R. Shwartz, et al, arXiv:1703.00810 (2017)

for information bottleneck

X Z

T

min
𝑤

𝐼 𝑇; 𝑋 , s.t. 𝐼 𝑇; 𝑍 > 𝐼 𝑋; 𝑍 − 𝜖

W

Information bottleneck ~ 𝝆𝒚 &𝑴𝒙
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Problem setup: data processing inequality

Sensing Computing

𝜌𝑦 𝑝(𝑥|𝑦) = 𝑡𝑟(𝜌𝑦𝑀𝑥) 𝑝(𝑦|𝑥)

𝑌 ෨𝑌𝑋

What

&

Where

Computing (data processing) does not increase information.

(not just mutual information, but also Fisher information)

8/42



Problem setup: data processing inequality

I. Shumailov, et al, Nature 631, 755–759 (2024)

Garbage in, garbage out

➢ It highlights the importance of data quality 

against dataset size

➢ In machine perception, measurement 

optimization is essential.
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Problem setup: wave-particle duality

Optica field interacts with a sensor
in the unit of ‘photon’ …

Light source Wave Particle

Detector
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Problem setup: photon statistics

Super-Poissonian light Sub-Poissonian lightPoissonian light
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Coherent state

Poisson 

distribution

Thermal state

Bose-Einstein 

distribution

Fock state
Delta 
distribution

𝑛 = 5 𝑛 = 5𝑛 = 5

Δ𝑛2 = 5 Δ𝑛2 = 30 Δ𝑛2 = 0

ො𝑎 𝛼 = 𝛼|𝛼⟩, 𝑛 = 𝛼 2

𝑝 𝑛 = 𝑛 𝛼 2 = 𝑒− 𝑛
𝑛 𝑛

𝑛!
𝑝 𝑛 = 𝑛 𝜌 𝑛 =

𝑛 𝑛

𝑛 + 1 𝑛+1

ො𝑛 𝑛′ = 𝑛′|𝑛′⟩

𝑝 𝑛 = 𝛿𝑛𝑛′

𝜌 = න
1

𝜋 𝑛
𝑒−| |𝛼 2/ 𝑛 𝛼 ۦ |𝛼 d2𝛼
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Problem setup: imaging

1M photons100K photons10K photons

…

Ultrafast and ultrasensitive camera

Each photon adds a bright dot in the images (512 * 512)
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Problem setup: a comprehensive model of sensing
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Problem statement

Sensing Computing

𝜌𝑦 𝑝(𝑥|𝑦) = 𝑡𝑟(𝜌𝑦𝑀𝑥) 𝑝(𝑦|𝑥)

𝑌 ෨𝑌𝑋

What

&

Where
Aperture

Exposure time

Detectivity…

For a given system (𝝆𝒚) and a given task (𝒚 = {‘Cat’ / ‘Dog’, distance}),

➢ What’s the distance metric to depict the information bottleneck, subject to certain 

symmetries (translation, rotation, scaling, etc.)?

➢ What’s the structure of the distance metric (how is it related to physical parameters)?

➢ How many photons are needed in the measurement with a given sensor?

➢ What’s the optimal measurement requiring the least photons?

𝑀𝑥~
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Physical limit matters

(1) With the physical limit, we can quantify/score a specific model for a given task.

(2) We can optimize measurement to improve AI.

(3) We can design public policies and industrial standards for machine perception.

Photonic information vs. electronic information

Training a chatbot can use as much electricity as a neighborhood consumes in a year.

No bragging.
That’s against (physics) laws!

My self-driving car can 
be as fast as a rocket.
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Experiment: classification of two spectra

Ground truth Experimental data

(W
/m

2
*c

m
)
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Experiment: convergent accuracy

𝐼 = − log
1

2
− − log𝑃𝑎𝑐𝑐

𝑃𝑎𝑐𝑐 =
Pr 0|0 + Pr 1|1

2

Shannon’s information 

about the object
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Experimental bound of accuracy

𝐼 = − log
1

2
− − log𝑃𝑎𝑐𝑐

𝑃𝑎𝑐𝑐 =
Pr 0|0 + Pr 1|1

2

Shannon’s information 

about the object
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SOTA 1: Mutual information

𝑌 𝑍𝑋
Sensing Computing

➢ Mutual information

➢ Markov chain

𝐼 𝑋; 𝑌 = ∬ 𝑝 𝑥, 𝑦 log
𝑝(𝑥, 𝑦)

𝑝 𝑥 ⋅ 𝑝(𝑦)
d𝑥d𝑦 ≥ 0

𝑋 𝑌

➢ Data processing inequality

𝑋
𝑌

𝑍

𝐻 𝑋, 𝑍 ; 𝑌 = 𝐼 𝑋; 𝑌 + 𝐻 𝑌; 𝑍 |𝑋
= 𝐼 𝑍; 𝑌 + 𝐻 𝑋; 𝑌 |𝑍

= 0

≥ 0

𝐼 𝑋; 𝑌 ≥ 𝐼 𝑍; 𝑌

20/42



Mutual information has no order information

𝑍𝑋

Example

𝑍 = 𝑁𝑂𝑇(𝑋)

0

01
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1 0.5 0

𝑍𝑋

𝑝(𝑥, 𝑧)

𝐻 𝑋 = 𝐻 𝑍 = 𝐼 𝑋; 𝑍 = 1 bit
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Machine Learning Data

Mutual Information

Curve classification

Mutual information

Shannon information
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SOTA 2: Quantum hypothesis testing

Hypothesis states
➢ Null hypothesis H0,                𝝆𝟎

⨂𝑵

➢ Alternative hypothesis H1, 𝝆𝟏
⨂𝑵

Test operator
𝚷:ℂ𝑵∗𝑾 → {𝟎, 𝟏}

Helstrom bound on error probability
𝑃𝑒𝑟𝑟 = 𝜋0 ∗ 𝑡𝑟 𝜌0

⨂𝑁 ⋅ Π + 𝜋1 ∗ 𝑡𝑟 𝜌1
⨂𝑁 ⋅ 𝕀 − Π

=
1 − 𝑡𝑟 𝜌†𝜌

2
, 𝜌 = 𝜋0𝜌0

⨂𝑁 − 𝜋1𝜌1
⨂𝑁

Hilbert space ~ 𝜒𝑁∗𝑊

𝜒: number of possible states   ~ 256

W: number of channels           ~ 100-1M

𝑁: number of measurements  > 100

Quantum Chernoff bound

𝑃𝑒𝑟𝑟~𝑒
−𝑁⋅𝜉 , 𝜉 = − log min

0≤𝑠≤1
𝑡𝑟 𝜌0

1−𝑠𝜌1
𝑠

𝜌0

𝜌1

𝚷 → 𝟏𝜌𝑠

Hilbert space ~ 𝜒𝑊
𝜌𝑠

𝚷 → 𝟎
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Quantum Chernoff bound

Identifying objects at the quantum limit for superresolution imaging.

Phys. Rev. Lett. 129 180502 (2022)

Experimental demonstration of quantum-inspired optical symmetric 

hypothesis testing

Opt. Lett. 49, 750-753 (2024)

Hilbert space ~ 𝜒𝑊,𝑊 = 2
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Quantum Chernoff bound

𝑃𝑒𝑟𝑟~
1

2
𝑒−𝑁⋅𝜉𝐶 , 𝜉𝑄 = − log min

0≤𝑠≤1
𝑡𝑟 𝜌0

𝑠𝜌1
1−𝑠

Only asymptotically correct!

𝜉𝐶 = − log min
0≤𝑠≤1



𝑘=1

𝑊

𝑝0𝑘
𝑠 𝑝1𝑘

1−𝑠
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What’s wrong with existing theories

Those metrics for the information bottleneck are:

➢Only asymptotically/qualitatively correct

➢Not a distance metric invariant to symmetric transformations 

➢Lacking the structure of the distance metric
(no physics parameters about measurement)

An exact theory of the upper bound is critical

• For searching for the quantum-optimal measurement.

• To develop the information theory of machine learning.
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Channel-phase uncorrelated (spectra, images, videos, etc.)

𝑝0

𝑝1

𝐸 = 𝒏|𝚷𝒏 = 𝟏

𝒏𝟏

𝒏𝟐
Fock space is the eigenspace for a given 
channel (e.g., pixel).

➢Photon number is a variable but not fixed.

➢Physics laws determine the distribution.

𝑃𝑒𝑟𝑟 = 𝜋0 ∗ Pr 𝐸|𝐻0 + 𝜋1 ∗ Pr 𝐸
𝑐|𝐻1

= 𝜋1 + 𝜋0 Pr 𝐸|𝐻0 − 𝜋1 Pr 𝐸|𝐻1

is minimized when

𝐸 = 𝒏|𝜋0 Pr 𝒏|𝐻0 − 𝜋1 Pr 𝒏|𝐻1 < 𝟎
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Unpublished data
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Unpublished data
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Theoretical bound of accuracy
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Mutual Information

Chernoff Bound

Our approach

➢ An exact information-theoretic bound 

of ML

➢ Machine learning saturates the bound
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Theoretical bound of accuracy

Hypothesis 0

Hypothesis 1
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Unpublished data
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Hypothesis test as parameter estimation

➢ Mix the signals of two hypotheses with a mixture 
fraction, and then estimate the fraction.

➢ The uncertainty of estimating the Mean of a 
Gaussian distribution is given by its Variance 
(i.e., the inverse of its Fisher information matrix).

Ԧ𝜆 = 1 − 𝜂 Ԧ𝜆0 + 𝜂 Ԧ𝜆1

𝑝 𝒏; 𝜂 =ෑ

𝑘=1

𝑊
𝜆𝑘
𝑛𝑘

𝜆𝑘 + 1 𝑛𝑘+1

𝑃𝑎𝑐𝑐 = Pr 𝜂 < 1/2 = න
−∞

1/2

𝒩 𝜂; 0,1/𝐽𝜂 d𝜂

𝑃𝑒𝑟𝑟 = 1 − 𝑃𝑎𝑐𝑐

Ԧ𝜆𝑗 = Ԧ𝑒𝑗 ∗ 𝐵(𝑇) symmetry

Physics 

parameters

33/42
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Semantic distance for the information bottleneck

𝑁𝑑0
2

Flicker noise

Johnson noise

I=0.75 bit

Identifiable criterion

Circles: ML

Curves: Theory

Identifiable criterion:

𝑁𝑑0
2 = 1

F. Bao, et al, “Heat-assisted detection and ranging,”

Nature 619, 743–748 (2023) (Cover article)

Single-photon

Fisher information matrix:

Fisher information matrix:

Semantic distance

Shannon information:

𝑖, 𝑗 ∈ {𝑔, 𝑇}

Statistical distance with structures
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Data processing inequality: Fisher information

𝑌 𝑍𝑋
Sensing Computing

➢ Markov chain

෨𝑌(𝑋 𝑜𝑟 𝑍)

Estimator

𝑝 𝑧 𝑦 = න𝑝 𝑧 𝑥 ∗ 𝑝 𝑥 𝑦 d𝑥 , 𝜕𝑦𝑝(𝑧|𝑦) = න𝑝 𝑧 𝑥 ∗ 𝜕𝑦𝑝 𝑥 𝑦 d𝑥

𝐽𝑦
𝑧 = න

𝜕𝑦𝑝(𝑧|𝑦)
2

𝑝(𝑧|𝑦)
d𝑧 = න

𝑝 𝑧 𝑥 ∗ 𝜕𝑦𝑝 𝑥 𝑦 d𝑥
2

𝑝 𝑧 𝑥 ∗ 𝑝 𝑥 𝑦 d𝑥
d𝑧

≤ නන𝑝 𝑧 𝑥 ∗
𝜕𝑦𝑝 𝑥 𝑦

2

𝑝 𝑥 𝑦
d𝑥d𝑧 = න

𝜕𝑦𝑝 𝑥 𝑦
2

𝑝 𝑥 𝑦
d𝑥

= 𝐽𝑦
𝑥
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Binocular stereovision

𝛿𝑧 =
𝑧2

𝑏𝑓
𝛿𝑑 𝛿𝑑: disparity error

𝑧 =
𝑏𝑓

𝑑

𝑥 = −
𝑏

𝑑
⋅
𝑥𝐿 + 𝑥𝑅

2

𝛿𝑧: ranging error

𝑦 = −
𝑏

𝑑
⋅
𝑦𝐿 + 𝑦𝑅

2

Schematic of binocular stereo vision

How many photons do we need to measure the distance within a given accuracy?…
(What is the fundamental limit of disparity error?)
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The correspondence problem

Scene 𝑆(𝑥, 𝑦, 𝑧, 𝜈)

Left view Right view

Ideal images 𝜆𝑥𝑦𝑣
on the image plane

Mean images 𝒜𝑥𝑦𝑣

with diffraction

Actual images 𝒞𝑥𝑦𝑣
with noise

Convolution with PSF

Photon statistics

For a given point in the actual 
left image, find the 

corresponding point in the actual 
right image.

--- The correspondence problem in computer vision
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Estimation theory

Scene 𝑆(𝑥, 𝑦, 𝑧, 𝜈)

Left view

Mean images 𝒜𝑥𝑦𝑣

with diffraction

Actual images 𝒞𝑥𝑦𝑣
with noise

Convolution with PSF

Photon statistics

Ideal images 𝜆𝑥𝑦𝑣
on the image plane

We re-interpret the correspondence 
problem in computer vision as 
a position-estimation problem in 
estimation theory:

For a given point in the actual image, find 
the corresponding point in the ideal 
image.

F. Bao, et al, “Heat-assisted detection and ranging,”

Nature 619, 743–748 (2023) (Cover article)
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Correspondence uncertainty

𝑥, 𝑦: Image coordinates
𝑣: Wave number
𝛾: Normalized electronic noise power
𝛿𝑧: ranging error
𝛿𝑑: disparity error
Ω: window domain

Depth resolution:

𝛿𝑧: ranging error
𝑁: photon number
𝑧: distance
𝑏: baseline
𝑓: focal length
𝛾: Electronic noise power over shot-noise power
𝜎𝑑: photonic diffraction uncertainty (width of PSF)
𝜎𝑐: photonic correspondence uncertainty

𝜎𝑐 = 1/𝐽𝑥
0, 𝐽𝑥

0 is the single-photon FI
F. Bao, et al, “Heat-assisted detection and ranging,”

Nature 619, 743–748 (2023) (Cover article)
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Physical limit on depth estimation

Machine perception experiment

Information theory

1. Using stereo matching to derive the depth 
information (d, e, f).

2. Comparing with the ground truth to get 
error statistics along the white arrow (blue 
dots in insets)

(red curves in insets)

Machine perception obeys the 
information-theoretic bound…
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Summary & Outlook

➢ Physical limits

➢ Physical limits on classification

➢ Physical limits on depth estimation

➢ Generalization to the quantum case,
Multi-label classification, SIFT operator, Language problem, …

Information bottleneck in physics parameters invariant to transformations

Semantic distance

Correspondence uncertainty

(measurement optimization)
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