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Take-home message: Benchmarking is essential!
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Introduction : Glass Physics
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Gas
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 Low density
— Small parameters for
statical and dynamical
theories

Very well understood
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Gas Crystal
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* Low density » Small fluctuations around
— Small parameters for periodic crystal structure
statical and dynamical o PElErEfen s
theories conserved dislocations

(defects)
Very well understood Well understood

4 Gerhard Jung Generative Al - Supercooled Liquids



There is still no general first-principle theory of liquids

« Amorphous structure
« No small parameter
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There is still no general first-principle theory of liquids

« Amorphous structure
« No small parameter

Nevertheless, well understood

- Density-function theory (structure)
+ Mode-coupling theory (dynamics)
- Computer simulations
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Supercooled Liquids and Glasses
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L. Janssen 6, 00097 (2018)

- Supercooled liquid: strongly cooled/compressed liquid
« Viscosity increases by orders of magnitude
« Glass (solid with amorphous structure)
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Salvador Dali, The persistence of memory (1931)

7 Gerhard Jung Generative Al - Supercooled Liquids



Supercooled Liquids and Glasses

normal liquid B glass

02209089 900,000
Baeie  enashe
Po 0% 2% gﬂ’oﬁ

L. Janssen 6, 00097 (2018)

- Supercooled liquid: strongly cooled/compressed liquid
« Viscosity increases by orders of magnitude
« Glass (solid with amorphous structure)

Question 1: Is there an ideal, equilibrium, truly solid glass?

8 Gerhard Jung Generative Al - Supercooled Liquids



The Failure of Mode-Coupling Theory
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The Failure of Mode-Coupling Theory
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Our Sampling Problem
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Our Sampling Problem

A

enerative Al'?

Potential energy

a0 p(x) = e VT

Conformation

W Boltzmann
‘%. distribution

b
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Sampling Supercooled Liquid Models

Ternary mixture
- 3 different types/radii (color)
to prevent crystallization
Molecular Dynamics (MD)
- Discretize and numerically
solve Newtons e.o.m.
SWAP Monte Carlo (SMC)
« Accelerate equilibration by

exchanging particles of
different type
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AEpot = Emp — Esmc Cv = T2((E?) — (E)?)
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Conclusion MD:

« Falls out of equilibrium at Typ = 0.3 ~ T,
« Can we do better with generative Al?
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Generative Al

Learning to sample from high-dimensional probability
distribution

e You

Why would anyone be interested in studying glasses?

ChatGPT

Studying glasses, in the context of materials science or physics, can be of significant interest for
several reasons:

-

Understanding Material Properties: Glasses exhibit unique material properties that differ from
crystalline solids. Investigating these properties can help scientists understand fundamental
aspects of solid-state physics and materials science.

o

Technological Applications: Glasses have a wide range of technological applications, including in
optics (e.g., lenses, optical fibers), electronics (e.g., display screens, semiconductors), and
materials engineering (e.g., glass ceramics, protective coatings). Studying glasses allows
researchers to optimize these applications and develop new technologies.

Gerhard Jun
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ChatGPT, Dall-E, ... : Probability distribution un-
known and intractable

7

Statistical physics: Requires control over
probability distribution (P(x) oc exp(—U(x)/T))
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1 Sample Gaussian distribution
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Statistical physics: Requires control over |~ @
probability distribution (P(x) oc exp(—U(x)/T))
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Normalizing flows (NF): Invertible and analyti-
cally tractable

F. Noe et al. 365, eaaw1147

(2019)
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Goal: Sampling from target distribution

pe(X) = 2. exp(=U(x)/T")

Prior (easy) distribution pp(x): High temperature samples
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Goal: Sampling from target distribution

pe(X) = 2. exp(=U(x)/T")

Prior (easy) distribution pp(x): High temperature samples

Continuous Normalizing Flow: T

%xv(t) = v(xy(t),t), x,(0) = X, drawn from pp(x)

™o = Xy (t =1).

— Natural choice for particle configurations
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Continuous Normalizing Flow

%Xv(t) = v(x,(t),t), x,(0) =X, drawn from pp(x).

Approximation: Describe “flow” by pair-wise potential field
v(x(t), t) = Vix®(x(t), 1),
O(x(t),1) =Y d(d(t),1) dy(t) = [xi(t) — x(t)].
ij

J. Koehler et al., arXiv:2006.02425 (2020)
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Continuous Normalizing Flow

%Xv(t) = v(x,(t),t), x,(0) =X, drawn from pp(x).

Approximation: Describe “flow” by pair-wise potential field
v(x(t), t) = Vix®(x(t), 1),
O(x(t),1) =Y d(d(t),1) dy(t) = [xi(t) — x(t)].
ij

J. Koehler et al., arXiv:2006.02425 (2020)

- Equivariant: Same symmetries as underlying distribution
« ®(d,t) : radial basis functions (free parameters)
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Continuous Normalizing Flow

a
dt
Approximation: Describe “flow” by pair-wise potential field

x(t) = v(xy(t),t), x,(0) =X, drawn from pp(x).

v(x(t),t) = Vo (x(t), 1),
O(x(t),1) =Y d(d(t),1) dy(t) = [xi(t) — x(t)].
i

J. Koehler et al., arXiv:2006.02425 (2020)

- Equivariant: Same symmetries as underlying distribution
®(d, t) : radial basis functions (free parameters)
Differentiable — Backpropagation

Loss: KL divergence(mixing of energy-based and maximum
likelihood training)
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Continuous Normalizing Flow

%Xv(t) = v(x,(t),t), x,(0) =X, drawn from pp(x).

Approximation: Describe “flow” by pair-wise potential field
v(x(t), t) = Vix®(x(t), 1),
O(x(t),1) =Y d(d(t),1) dy(t) = [xi(t) — x(t)].
ij

J. Koehler et al., arXiv:2006.02425 (2020)

- Equivariant: Same symmetries as underlying distribution

®(d, t) : radial basis functions (free parameters)
Differentiable — Backpropagation

Loss: KL divergence(mixing of energy-based and maximum
likelihood training)

« Unbiasing with weights w(x,) o @~ V(T%0)/T+~U(xo)/Te-+log det |V T|
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AEpot = Enr — Esmc Cv = T2({E?) — (E)?)
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Conclusion NF:

« Equilibration down to very low temperatures (Tys = 0.2)

* NF performs better than MD

- Efficiency obtained by learning weights rather than
transforming states
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More benchmarking: Population annealing (PA)
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More benchmarking: Population annealing (PA)

1. Create initial set of R configurations at high temperature T,

2. Anneal configurations j to T;,, = T; — AT by weighting them
as e AT 'E (small AT!)

3. Relax by short MD simulations

4. Repeat iterativelly until desired low temperature is reached
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More benchmarking: Population annealing (PA)

1. Create initial set of R configurations at high temperature T,

2. Anneal configurations j to T;,, = T; — AT by weighting them
as e AT 'E (small AT!)

3. Relax by short MD simulations

4. Repeat iterativelly until desired low temperature is reached

(a) 0.01 T T T T T (b) SMC T T T T
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Can Generative Al Models Efficiently Sample
Deeply Supercooled Liquids?
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Can Generative Al Models Efficiently Sample
Deeply Supercooled Liquids?
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Yes, but not better than other enhanced sampling techniques!
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Conclusion: Generative Al

« Enhanced sampling surprisingly efficient for small systems
- Take-home message: Benchmarking is essential!

Outlook

* Improve generative Al?

7

Potential energy

Conformation
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Conclusion: Generative Al

- Enhanced sampling surprisingly efficient for small systems
- Take-home message: Benchmarking is essential!

Outlook

* Improve generative Al?

7

Potential energy

Conformation

« Combine generative Al with other techniques
- Reinforcement learning improved SMC? (local moves)
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Dynamic Heterogeneity (DH)

- Strong contrast between active and
passive regions

* Increases with decreasing T
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passive regions
* Increases with decreasing T

- Fate at low temperatures?
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- Strong contrast between active and
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Our Inference Problem

Structure (Input)
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Our Inference Problem

Structure (Input) Dynamics (Labels)

Question 2: Where will (long-time) structural relaxation set in?
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Our Inference Problem

Supervised Machine Learning!?
Structure (Input)

Question 2: Where will (long-time) structural relaxation set in?
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Human-made descriptors (density, potential energy, local
packing)

+ Weak correlation
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Human-made descriptors (density, potential energy, local
packing)

+ Weak correlation

State-of-the-art: Graph neural networks (GNNs)

3D input Graph input Graph network Mobility predictions

Bapst et al., Nat. Phys. 16, 448 (2020)

« Computationally heavy
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Physics-inspired machine learning: Combine different
structural descriptors (inductive bias):

+ Potential energy
- Voronoi volume/perimeter
« Local density

Bond-order, locally favored structures, Tanaka's ¢

Soft modes
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Network Geometry of GlassMLP

- ~ Input Bottleneck Hidden  Output
Physics-inspired | [ayer layer layers layer
descriptors:

¢ 7, Epor, P, AE
e coarse graining
- J

extract \
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Network Geometry of GlassMLP
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Network Geometry of GlassMLP

- ~ Input Bottleneck Hidden  Output
Physics-inspired | (ayer layer layers layer
descriptors:
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Benchmarking: Supervised learning on training set, analyze
predictability on test set
cov(Ch,Yip)

Pearson: pp = : -
var(Cg)var(Yy,p)

1 LBLRLLLLLY I ELLRLLLL BB R IR LLLL B R AL

GlassMLP

08 - GNN .~ |
0.6 _| * Great performance

£ - Parsimonious
o (training: < 5 minutes)
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Until now: Learn one network for each state point (time,
temperature)

New approach: Learn one network for all times and
temperatures!
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Until now: Learn one network for each state point (time,
temperature)

New approach: Learn one network for all times and
temperatures!

Input Bottleneck Hidden Output
layer layer layers layer
Physics-inspired
input {S"}: . 1 = T
«7,E 5, AF o O 0< 0.8 |- “W\\\ |
e coarse graining - : X , ’ ‘X’ - . =06 |- \ |
5 : < T=021 — \
‘» 004 |FT=023 ---- V-
extract . . T=0.25 - \
predict 02 L 7-03 —.— "
oy Pase T=04 -— >
?(_g%‘; 33 ' @) |t ol o anmrdl_nnorern
hos o | 0.001  0.01 0.1 1 10
W\L t/TBB

— Only twice as many fitting parameters as before (x~ 1200)
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Pearson correlation
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tGlassMLP learns universal structural descriptors

31 Gerhard Jung Generative Al - Supercooled Liquids



Pearson correlation
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tGlassMLP transfers very accurately to lower temperatures

31 Gerhard Jung Generative Al - Supercooled Liquids



Dynamic susceptibility

Xa(t) = N ((C3(1)) — (Ca(t))?) with Ca(t) = 3, Ca(1)
CETTTITT T T
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0.01

Transferability indicates crossover in susceptibility x,(T)
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Interpretation of trained networks

Input Bottleneck  Hidden ~Output
layer layer layers  layer

« Attention layer learns weights
for each structural descriptor

« Extract relative weight of
descriptor with length scale L

Physics-inspired
input {S7}:

«7,E 7. AE

e coarse graining||

predict
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Interpretation of trained networks

Input Bottleneck Hidden Output
layer layer layers layer

« Attention layer learns weights
for each structural descriptor

Physics-inspired
input {S'}:
«7,E 7. AE
o coarse graining|[ "

« Extract relative weight of
descriptor with length scale L

predict

0.3
=015
0.25 T=0.18 —— _|
T =021
09 L T =023 |
- T=0.25
o | T=03 =~ |
Qf ——t
0.1
0.05
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Interpretation of trained networks

Input Bottleneck  Hidden — Output
layer layer layers layer

Physics-inspired
input {5}: o
o7 E5,5E |

® coarse gmining .

« Attention layer learns weights
for each structural descriptor

« Extract relative weight of
descriptor with length scale L

predict

&4, tGlassMLP 7
4.5 - 1.56m:, tGlassMLP .

2 25 3 35 4 45 5
il i
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Machine learning: useful tool to study glass physics

* Generative Al to create amorphous structures

- Scalability and transferability: Characterize dynamic
heterogeneity at experimental glass transition temperature

« Interpretability: Extract growing length scale
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Machine learning: useful tool to study glass physics

* Generative Al to create amorphous structures

- Scalability and transferability: Characterize dynamic
heterogeneity at experimental glass transition temperature

« Interpretability: Extract growing length scale
Outlook

- Create “Glass Simulator” (Generative Al + Dynamics)
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Thank you for your attention! I
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