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Intro: Glasses Generative AI

Predicting
Dynamics

Take-home message: Benchmarking is essential!
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Introduction : Glass Physics
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Gas

• Low density
→ Small parameters for
statical and dynamical
theories

Very well understood

Crystal

• Small fluctuations around
periodic crystal structure

• Relaxation around
conserved dislocations
(defects)

Well understood
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Liquid

There is still no general first-principle theory of liquids

• Amorphous structure
• No small parameter

Nevertheless, well understood

• Density-function theory (structure)
• Mode-coupling theory (dynamics)
• Computer simulations
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Supercooled Liquids and Glasses

L. Janssen 6, 00097 (2018)

• Supercooled liquid: strongly cooled/compressed liquid
• Viscosity increases by orders of magnitude
• Glass (solid with amorphous structure)
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Salvador Dali, The persistence of memory (1931)
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Supercooled Liquids and Glasses

L. Janssen 6, 00097 (2018)

• Supercooled liquid: strongly cooled/compressed liquid
• Viscosity increases by orders of magnitude
• Glass (solid with amorphous structure)

Question 1: Is there an ideal, equilibrium, truly solid glass?
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The Failure of Mode-Coupling Theory

Experimental / Numerical Ceiling

Numerical Ceiling (1990)
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Our Sampling Problem

Boltzmann
distribution
p(x) = e−U(x)/T

Generative AI!?
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Intro: Glasses Generative AI

Predicting
Dynamics
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Sampling Supercooled Liquid Models

Ternary mixture
• 3 different types/radii (color)

to prevent crystallization
Molecular Dynamics (MD)
• Discretize and numerically

solve Newtons e.o.m.
SWAP Monte Carlo (SMC)
• Accelerate equilibration by

exchanging particles of
different type
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∆Epot = EMD − ESMC CV = T−2(⟨E2⟩ − ⟨E⟩2)
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Conclusion MD:

• Falls out of equilibrium at TMD = 0.3 ≈ Tc
• Can we do better with generative AI?
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Generative AI

Learning to sample from high-dimensional probability
distribution
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ChatGPT, Dall-E, ... : Probability distribution un-
known and intractable

E
Statistical physics: Requires control over
probability distribution (P(x) ∝ exp(−U(x)/T))

Normalizing flows (NF): Invertible and analyti-
cally tractable

F. Noe et al. 365, eaaw1147

(2019)
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Goal: Sampling from target distribution

ρ∗(x) = Z−1
∗ exp(−U(x)/T∗)

Prior (easy) distribution ρP(x): High temperature samples

Continuous Normalizing Flow: T

d
dtxv(t) = v(xv(t), t), xv(0) = x0 drawn from ρP(x)

Tx0 = xv(t = 1).

→ Natural choice for particle configurations
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Continuous Normalizing Flow

d
dtxv(t) = v(xv(t), t), xv(0) = x0 drawn from ρP(x).

Approximation: Describe “flow” by pair-wise potential field

v(x(t), t) = ∇xΦ(x(t), t),

Φ(x(t), t) =
∑
ij

Φ̃(dij(t), t) dij(t) = |xi(t)− xj(t)|.
J. Koehler et al., arXiv:2006.02425 (2020)

• Equivariant: Same symmetries as underlying distribution

• Φ̃(d, t) : radial basis functions (free parameters)
• Differentiable → Backpropagation
• Loss: KL divergence(mixing of energy-based and maximum

likelihood training)
• Unbiasing with weights w(x0) ∝ e−U(T x0)/T∗−U(x0)/TP+log det |∇xT̄|
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∆Epot = ENF − ESMC CV = T−2(⟨E2⟩ − ⟨E⟩2)
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Conclusion NF:

• Equilibration down to very low temperatures (TNF = 0.2)
• NF performs better than MD
• Efficiency obtained by learning weights rather than

transforming states
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More benchmarking: Population annealing (PA)

1. Create initial set of R configurations at high temperature T0

2. Anneal configurations j to Ti+1 = Ti −∆T by weighting them
as e−∆T−1Ej (small ∆T!)

3. Relax by short MD simulations
4. Repeat iterativelly until desired low temperature is reached
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Can Generative AI Models Efficiently Sample
Deeply Supercooled Liquids?
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Yes, but not better than other enhanced sampling techniques!

20 Gerhard Jung Generative AI - Supercooled Liquids



Can Generative AI Models Efficiently Sample
Deeply Supercooled Liquids?

100

101

102

103

104

105

106

107

108

109

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5

τ α

1/T

SMC, τ∆E
α

MD, τ∆E
α

PT, τ∆E
α

PA, τ∆E
α

NF, τ∆E
α

Yes, but not better than other enhanced sampling techniques!
20 Gerhard Jung Generative AI - Supercooled Liquids



Conclusion: Generative AI

• Enhanced sampling surprisingly efficient for small systems
• Take-home message: Benchmarking is essential!

Outlook

• Improve generative AI?

• Combine generative AI with other techniques
• Reinforcement learning improved SMC? (local moves)
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Dynamic Heterogeneity (DH)

• Strong contrast between active and
passive regions

• Increases with decreasing T

• Fate at low temperatures?
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Our Inference Problem

Structure (Input)

Dynamics (Labels)
Supervised Machine Learning!?

Question 2: Where will (long-time) structural relaxation set in?
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Intro: Glasses Generative AI

Predicting
Dynamics
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Human-made descriptors (density, potential energy, local
packing)

• Weak correlation

State-of-the-art: Graph neural networks (GNNs)

Bapst et al., Nat. Phys. 16, 448 (2020)

• Computationally heavy
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Physics-inspired machine learning: Combine different
structural descriptors (inductive bias):
• Potential energy
• Voronoi volume/perimeter
• Local density
• Bond-order, locally favored structures, Tanaka’s θ

• Soft modes
• ...
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Network Geometry of GlassMLP

... ... ...

Physics-inspired
descriptors:

• ρi, Eipot,p
i,∆Ei

• coarse graining

Input
layer

Bottleneck
layer

Hidden
layers

Output
layer

extract predict
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Benchmarking: Supervised learning on training set, analyze
predictability on test set

Pearson: ρP = cov(CiB,YiMLP)√
var(CiB)var(YiMLP)
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GNN

• Great performance
• Parsimonious

(training: < 5 minutes)
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GlassMLP MD

t=
τ

BB α
/3

0
t=

τ
BB α
/3

CB(t) 0.2 0.4 0.6 0.8 1.0

29 Gerhard Jung Generative AI - Supercooled Liquids



Until now: Learn one network for each state point (time,
temperature)

New approach: Learn one network for all times and
temperatures!

...
...

...

Physics-inspired
input {Si}:

• ρi, Ei
, pi,∆E

i

• coarse graining
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→ Only twice as many fitting parameters as before (≈ 1200)
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Pearson correlation
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tGlassMLP learns universal structural descriptors
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Pearson correlation
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Dynamic susceptibility

χ4(t) = N
(
⟨C̄2

B(t)⟩ − ⟨C̄B(t)⟩2) with C̄B(t) =
∑

i C iB(t)
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Transferability indicates crossover in susceptibility χ4(T)
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Interpretation of trained networks

...
...
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Physics-inspired
input {Si}:

• ρi, Ei
, pi,∆E

i

• coarse graining

A
tt

en
ti

on
la

ye
r

MLP1 MLP2

T C̄B

Input
layer

Bottleneck
layer

Hidden
layers

Output
layer

extract
predict

• Attention layer learns weights
for each structural descriptor

• Extract relative weight of
descriptor with length scale L

0

0.05

0.1

0.15

0.2

0.25

0.3

0 1 2 3 4 5 6 7 8 9

P
in
t
(L

)

L

T = 0.15
T = 0.18
T = 0.21
T = 0.23
T = 0.25
T = 0.3
T = 0.4

33 Gerhard Jung Generative AI - Supercooled Liquids



Interpretation of trained networks

...
...

...

Physics-inspired
input {Si}:

• ρi, Ei
, pi,∆E

i

• coarse graining

A
tt

en
ti

on
la

ye
r

MLP1 MLP2

T C̄B

Input
layer

Bottleneck
layer

Hidden
layers

Output
layer

extract
predict

• Attention layer learns weights
for each structural descriptor

• Extract relative weight of
descriptor with length scale L

0

0.05

0.1

0.15

0.2

0.25

0.3

0 1 2 3 4 5 6 7 8 9

P
in
t
(L

)

L

T = 0.15
T = 0.18
T = 0.21
T = 0.23
T = 0.25
T = 0.3
T = 0.4

33 Gerhard Jung Generative AI - Supercooled Liquids



Interpretation of trained networks

...
...

...

Physics-inspired
input {Si}:

• ρi, Ei
, pi,∆E

i

• coarse graining

A
tt

en
ti

on
la

ye
r

MLP1 MLP2

T C̄B

Input
layer

Bottleneck
layer

Hidden
layers

Output
layer

extract
predict

• Attention layer learns weights
for each structural descriptor

• Extract relative weight of
descriptor with length scale L

4
4.5
5

5.5
6

6.5
7

7.5

2 2.5 3 3.5 4 4.5 5

ξ

1/T

ξ4, tGlassMLP
1.5ξint, tGlassMLP

33 Gerhard Jung Generative AI - Supercooled Liquids



Final Conclusions

Machine learning: useful tool to study glass physics

• Generative AI to create amorphous structures
• Scalability and transferability: Characterize dynamic

heterogeneity at experimental glass transition temperature
• Interpretability: Extract growing length scale

Outlook

• Create “Glass Simulator” (Generative AI + Dynamics)
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