Can Generative AI Models Efficiently Sample Deeply Supercooled Liquids?

Gerhard Jung

Beijing, November 13th, 2024

Artificial Intelligence for Theoretical Sciences

Take-home message: Benchmarking is essential!

Gerhard Jung

Generative AI - Supercooled Liquids

Introduction : Glass Physics

Generative AI - Supercooled Liquids

Gas

Low density

 \rightarrow Small parameters for statical and dynamical theories

Very well understood

Gas

Low density

 \rightarrow Small parameters for statical and dynamical theories

Very well understood

Crystal

- Small fluctuations around periodic crystal structure
- Relaxation around conserved dislocations (defects)

Well understood

There is still no general first-principle theory of liquids

- Amorphous structure
- No small parameter

There is still no general first-principle theory of liquids

- Amorphous structure
- No small parameter

Nevertheless, well understood

- Density-function theory (structure)
- Mode-coupling theory (dynamics)
- Computer simulations

Supercooled Liquids and Glasses

- Supercooled liquid: strongly cooled/compressed liquid
- Viscosity increases by orders of magnitude
- Glass (solid with amorphous structure)

Salvador Dali, The persistence of memory (1931)

Gerhard Jung

Generative AI - Supercooled Liquids

Supercooled Liquids and Glasses

- Supercooled liquid: strongly cooled/compressed liquid
- Viscosity increases by orders of magnitude
- Glass (solid with amorphous structure)

Question 1: Is there an ideal, equilibrium, truly solid glass?

The Failure of Mode-Coupling Theory

The Failure of Mode-Coupling Theory

Our Sampling Problem

Our Sampling Problem

Sampling Supercooled Liquid Models

Ternary mixture

• 3 different types/radii (color) to prevent crystallization

Molecular Dynamics (MD)

• Discretize and numerically solve Newtons e.o.m.

SWAP Monte Carlo (SMC)

 Accelerate equilibration by exchanging particles of different type

Conclusion MD:

- Falls out of equilibrium at $T_{MD} = 0.3 \approx T_c$
- Can we do better with generative AI?

Generative AI

Learning to sample from high-dimensional probability distribution

🔵 You

Why would anyone be interested in studying glasses?

ChatGPT

Studying glasses, in the context of materials science or physics, can be of significant interest for several reasons:

- Understanding Material Properties: Glasses exhibit unique material properties that differ from crystalline solids. Investigating these properties can help scientists understand fundamental aspects of solid-state physics and materials science.
- Technological Applications: Glasses have a wide range of technological applications, including in
 optics (e.g., lenses, optical fibers), electronics (e.g., display screens, semiconductors), and
 materials engineering (e.g., glass ceramics, protective coatings). Studying glasses allows
 researchers to optimize these applications and develop new technologies.

Gerhard Jung

Generative AI - Supercooled Liquids

ChatGPT, Dall-E, ... : Probability distribution **unknown** and **intractable**

Statistical physics: Requires **control** over probability distribution $(P(x) \propto \exp(-U(x)/T))$

ChatGPT, Dall-E, ... : Probability distribution **unknown** and **intractable**

Statistical physics: Requires **control** over probability distribution $(P(x) \propto \exp(-U(x)/T))$

Normalizing flows (NF): Invertible and analytically tractable

Gerhard Jung

F. Noe et al. 365, eaaw1147

(2019)

Goal: Sampling from target distribution

$$\rho_*(\mathbf{x}) = Z_*^{-1} \exp(-U(\mathbf{x})/T^*)$$

Prior (easy) distribution $\rho_P(x)$: High temperature samples

Goal: Sampling from target distribution

$$\rho_*(\mathbf{x}) = Z_*^{-1} \exp(-U(\mathbf{x})/T^*)$$

Prior (easy) distribution $\rho_P(x)$: High temperature samples

Continuous Normalizing Flow: T

$$\begin{aligned} \frac{\mathrm{d}}{\mathrm{d}t} x_{\mathrm{v}}(t) &= \mathrm{v}(x_{\mathrm{v}}(t), t), \quad x_{\mathrm{v}}(\mathrm{O}) = x_{\mathrm{o}} \text{ drawn from } \rho_{\mathrm{P}}(x) \\ \mathrm{T}x_{\mathrm{o}} &= x_{\mathrm{v}}(t = \mathrm{1}). \end{aligned}$$

 \rightarrow Natural choice for particle configurations

$$\frac{d}{dt}x_v(t) = v(x_v(t), t), \quad x_v(0) = x_0 \text{ drawn from } \rho_P(x).$$

Approximation: Describe "flow" by pair-wise potential field

$$egin{aligned} &v(x(t),t) =
abla_x \Phi(x(t),t), \ &\Phi(x(t),t) = \sum_{ij} ilde{\Phi}(d_{ij}(t),t) & d_{ij}(t) = |x_i(t) - x_j(t)|. \end{aligned}$$

$$\frac{\mathrm{d}}{\mathrm{d}t}x_{\mathrm{v}}(t) = \mathrm{v}(x_{\mathrm{v}}(t), t), \quad x_{\mathrm{v}}(\mathrm{O}) = x_{\mathrm{O}} \text{ drawn from } \rho_{\mathrm{P}}(x).$$

Approximation: Describe "flow" by pair-wise potential field

$$egin{aligned} & \mathbf{v}(\mathbf{x}(t),t) =
abla_{\mathbf{x}} \Phi(\mathbf{x}(t),t), \ & \Phi(\mathbf{x}(t),t) = \sum_{ij} ilde{\Phi}(d_{ij}(t),t) \quad d_{ij}(t) = |\mathbf{x}_i(t) - \mathbf{x}_j(t)|. \ & ext{ J. Koehler et al., arXiv:2006.02425 (2020)} \end{aligned}$$

- Equivariant: Same symmetries as underlying distribution
- $\tilde{\Phi}(d,t)$: radial basis functions (free parameters)

$$\frac{\mathrm{d}}{\mathrm{d}t}x_{\mathrm{v}}(t) = \mathrm{v}(x_{\mathrm{v}}(t), t), \quad x_{\mathrm{v}}(\mathrm{o}) = x_{\mathrm{o}} \text{ drawn from } \rho_{\mathrm{P}}(x).$$

Approximation: Describe "flow" by pair-wise potential field

$$egin{aligned} & v(x(t),t) =
abla_x \Phi(x(t),t), \ & \Phi(x(t),t) = \sum_{ij} ilde{\Phi}(d_{ij}(t),t) & d_{ij}(t) = |x_i(t) - x_j(t)|. \ & ext{ J. Kochler et al., arXiv:2006.02425 (2020)} \end{aligned}$$

- Equivariant: Same symmetries as underlying distribution
- + $\tilde{\Phi}(d,t)$: radial basis functions (free parameters)
- + Differentiable \rightarrow Backpropagation
- Loss: KL divergence(mixing of energy-based and maximum likelihood training)

$$\frac{\mathrm{d}}{\mathrm{d}t}x_{\mathrm{v}}(t) = \mathrm{v}(x_{\mathrm{v}}(t), t), \quad x_{\mathrm{v}}(\mathrm{o}) = x_{\mathrm{o}} \text{ drawn from } \rho_{\mathrm{P}}(x).$$

Approximation: Describe "flow" by pair-wise potential field

$$\begin{aligned} \mathbf{v}(\mathbf{x}(t),t) &= \nabla_{\mathbf{x}} \Phi(\mathbf{x}(t),t), \\ \Phi(\mathbf{x}(t),t) &= \sum_{ij} \tilde{\Phi}(d_{ij}(t),t) \quad d_{ij}(t) = |\mathbf{x}_i(t) - \mathbf{x}_j(t)|. \\ & \text{J. Koehler et al., arXiv:2006.02425 (2020)} \end{aligned}$$

- Equivariant: Same symmetries as underlying distribution
- + $\tilde{\Phi}(d,t)$: radial basis functions (free parameters)
- + Differentiable \rightarrow Backpropagation
- Loss: KL divergence(mixing of energy-based and maximum likelihood training)
- Unbiasing with weights $w(x_o) \propto e^{-U(T x_o)/T_* U(x_o)/T_P + \log \det |\nabla_x \overline{T}|}$

Conclusion NF:

- Equilibration down to very low temperatures ($T_{NF} = 0.2$)
- NF performs better than MD
- Efficiency obtained by learning weights rather than transforming states

More benchmarking: Population annealing (PA)

Gerhard Jung

Generative AI - Supercooled Liquids

More benchmarking: Population annealing (PA)

- 1. Create initial set of R configurations at high temperature $T_{\rm o}$
- 2. Anneal configurations *j* to $T_{i+1} = T_i \Delta T$ by weighting them as $e^{-\Delta T^{-1}E_j}$ (small ΔT !)
- 3. Relax by short MD simulations
- 4. Repeat iterativelly until desired low temperature is reached

More benchmarking: Population annealing (PA)

- 1. Create initial set of R configurations at high temperature $T_{\rm o}$
- 2. Anneal configurations *j* to $T_{i+1} = T_i \Delta T$ by weighting them as $e^{-\Delta T^{-1}E_j}$ (small ΔT !)
- 3. Relax by short MD simulations
- 4. Repeat iterativelly until desired low temperature is reached

Can Generative AI Models Efficiently Sample Deeply Supercooled Liquids?

Gerhard Jung

Generative AI - Supercooled Liquids

Can Generative AI Models Efficiently Sample Deeply Supercooled Liquids?

Yes, but not better than other enhanced sampling techniques!

Conclusion: Generative AI

- Enhanced sampling surprisingly efficient for small systems
- Take-home message: Benchmarking is essential!

Gerhard Jung

Outlook

Conclusion: Generative AI

- Enhanced sampling surprisingly efficient for small systems
- Take-home message: Benchmarking is essential!
- Outlook
 - Improve generative AI?
 Improve generativ
 - Combine generative AI with other techniques
 - Reinforcement learning improved SMC? (local moves)

Gerhard Jung

Generative AI - Supercooled Liquids

Dynamic Heterogeneity (DH)

- Strong contrast between active and passive regions
- Increases with decreasing T

Dynamic Heterogeneity (DH)

- Strong contrast between active and passive regions
- Increases with decreasing T
- Fate at low temperatures?

High T

Our Inference Problem

Structure (Input)

Our Inference Problem

Question 2: Where will (long-time) structural relaxation set in?

Gerhard Jung

Generative AI - Supercooled Liquids

Our Inference Problem

Question 2: Where will (long-time) structural relaxation set in?

Gerhard Jung

Generative AI - Supercooled Liquids

Human-made descriptors (density, potential energy, local packing)

• Weak correlation

Human-made descriptors (density, potential energy, local packing)

Weak correlation

Computationally heavy

Physics-inspired machine learning: Combine different structural descriptors (inductive bias):

- Potential energy
- Voronoi volume/perimeter
- Local density
- Bond-order, locally favored structures, Tanaka's $\boldsymbol{\theta}$
- Soft modes

...

Network Geometry of GlassMLP

Network Geometry of GlassMLP

Network Geometry of GlassMLP

Benchmarking: Supervised learning on training set, analyze predictability on test set

- Great performance
- Parsimonious (training: < 5 minutes)

Generative AI - Supercooled Liquids

Until now: Learn one network for each state point (time, temperature)

New approach: Learn one network for all times and temperatures!

Until now: Learn one network for each state point (time, temperature)

New approach: Learn one network for all times and temperatures!

ightarrow Only twice as many fitting parameters as before (pprox 1200)

Gerhard Jung

Generative AI - Supercooled Liquids

Pearson correlation

tGlassMLP learns universal structural descriptors

Pearson correlation

tGlassMLP transfers very accurately to lower temperatures

Dynamic susceptibility

Transferability indicates crossover in susceptibility $\chi_4(T)$

Interpretation of trained networks

- Attention layer learns weights for each structural descriptor
- Extract relative weight of descriptor with length scale *L*

Interpretation of trained networks

- Attention layer learns weights for each structural descriptor
 - Extract relative weight of descriptor with length scale L

Interpretation of trained networks

- Attention layer learns weights for each structural descriptor
 - Extract relative weight of descriptor with length scale L

Machine learning: useful tool to study glass physics

- Generative AI to create amorphous structures
- Scalability and transferability: Characterize dynamic heterogeneity at experimental glass transition temperature
- Interpretability: Extract growing length scale

Machine learning: useful tool to study glass physics

- Generative AI to create amorphous structures
- Scalability and transferability: Characterize dynamic heterogeneity at experimental glass transition temperature
- Interpretability: Extract growing length scale

Outlook

• Create "Glass Simulator" (Generative AI + Dynamics)

References:

G. Jung, G. Biroli, L. Berthier; PRL **130**, 238202 (2023) PRB **109**, 064205 (2024) MLST **5**, 035053 (2024) **Roadmap**: arXiv:2311.14752

CNRS, Montpellier

• Ludovic Berthier

ENS, Paris

• Giulio Biroli

Thank you for your attention!