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Great success in AI and ML

Prompt: A movie trailer featuring the adventures of 
the 30 year old space man wearing a red wool 
knitted motorcycle helmet, blue sky, salt desert, 
cinematic style, shot on 35mm film, vivid colors.

Open AI: Sora Google: Notebook LM



Although I am talking about the AI, 
I am a mathematician:



Singular Perturbation and Boundary layer
A major problem in mathematical and engineering fluid 
mechanics is the study of the boundary layer for the 
Navier-Stokes equations at small viscosity.

In general, due to the sharp transition inside boundary 
layers, a careful numerical treatment is required. 



Electromagnetic Waves (layered structures)

Numerical simulations are very useful since building device is complicated and expensive.



Geophysical Fluid Dynamics



My recent interests:



Neural Networks?

Cartoon by Girijesh



Theoretical Aspects

Generalization error: VC-dimension, Rademacher Complexity, etc..

Approximation error: Universal approximation theorem, etc.. 

Optimization error: Neural tangent kernel, etc..



Theoretical Aspects



Deep Generative Model
A generative model describes how a dataset is generated, in terms of a probabilistic 
model. By sampling from this model, we are able to generate new data.

Example of the Progression in the 
Capabilities of deep generative 
model from 2014 to 2018.



Deep Generative Model



II. AI for Science



AI for Science



Revisits: my old friends

Numerical simulations are very useful since building device is complicated and expensive.



1. Flatten the interface using change of variables 

  ugly terms appear 

2. Keep the Helmholtz operator in l.h.s., and source terms (nonlinear terms with g(x) and h(x)) in 
r.h.s. 

3. Introduce ansats w.r.t. ε and rearrange the equations 

  At each ε-order, inhomogeneous Helmholtz equations are deduced 

4. Solve the problem recursively 

Electromagnetic Waves (layered structures)

Hong et al., JCP (2017a, 2017b, 2018), APL (2019), SINUM (2021), Optics Express (2022)



Hong et al., JCP (2017a, 2017b, 2018), APL (2019), SINUM (2021), Optics Express (2022)

Solar Thermophotovoltaic (STPV) 



Connection to the ML

Problem description: Evaluation and design of photonic devices 

18

How to find an optimal design? 



Generative Model: Conditional Variational 
Autoencoder (CVAE) 

19

Condition: 
dog



Variational Autoencoders (VAE)

20

Input: 𝑥𝑖→ 𝑞∅(𝑥)→ 𝜇𝑖, 𝜎𝑖 𝑧𝑖 → 𝑔𝜃 𝑧 → 𝑝𝑖:output
𝜇𝑖, 𝜎𝑖, 𝜖𝑖 → 𝑧𝑖

Autoencoder is for Encorder, but VAE is for 
Decoder.



CVAE to the EM design

21



Active learning and results: Dataset 

22



Active learning and results: Performance 

23



Further application: Metamaterial

24



Metamaterial with Vq-CVAE

25



Metamaterial with Vq-CVAE

26

vq-cvae for metamaterial

Walk in latent space

Frequency vs. Poisson’s ratio 



Metamaterial with Vq-CVAE

27



Diffusion models

28



Diffusion models



Metamaterial generation via the DM

30



/ 2013/17

Graph Structured Database (3D metamaterials)



Metamaterial generation via the DM

32



33

C11 = 0.85
C11 = 0.42

Metamaterial generation via the DM
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Results: dynamic evolution of graph structures 



/ 2014/17

Results: inverse design



/ 2015/17

Results: functionally graded mechanical metamaterials
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Diffusion model consistently outperforms VQ-VAE in maintaining 
perfect connectivity across all iterations, underscoring its 
robustness in generating structurally coherent samples.

Diffusion model generates graphs with Poisson's ratio values 
clustered around one, indicating similarity to the training 
dataset, VQ-VAE produces a wider distribution, reflecting its 
ability to create more diverse and novel graph structures.

8/17

Diffusion model

Diffusion

Comparison study between VQ-VAE and diffusion models



/ 2013/17

Results: combinatorial synthesis of graph structures from basis latent



II. Scientific Machine Learning



What is Scientific Machine Learning?

- Scientific machine learning (SciML) is an emerging discipline within the data 
science community.  SciML extract insights from scientific data sets through 
innovative methodological solutions. SciML draws on tools from both machine 
learning and scientific computing to develop new methods for data analysis, 
and will be critical in driving the next wave of data-driven scientific 
discovery in the physical and engineering sciences.

- Like scientific computing, SciML is multidisciplinary and leverages 
expertise from mathematics, computer science, and the physical sciences.

Scientific Machine Learning



• Physics-Informed Machine Learning
• Using neural networks directly to parametrize the solution to PDEs.

• Solve one instance of PDE at a time.

• Models: unsupervised learning
• Physics Informed Neural Network (PINN), Deep Ritz Methods

Find 𝒖(𝒕, 𝒙) satisfying

ℒ𝑃𝐷𝐸 = 𝑓 𝑢, 𝑢𝑡, 𝑢𝑥, 𝑢𝑥𝑥, … = 0

ℒ𝐼𝐶 = 𝑢 0, 𝑥 −  𝑔 𝑥 = 0

ℒ𝐵𝐶 =  𝑢|𝜕Ω − ℎ 𝑡, 𝑥 |𝜕Ω = 0

𝑡

𝑥

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

𝑢𝜃
𝑛𝑛(𝑡, 𝑥)… …

Two main streams on DNN for PDEs



• Operator learning
• Learning a mapping from the parameters (e.g. external force, initial, and 

boundary conditions) of the PDEs to the corresponding solution.

• Learning a family of PDEs from data.

• Models
• Deep Operator Network (DeepONet)

• Fourier Neural Operator (FNO)

Find a map 𝓖: 𝒈 𝒙 ↦ 𝒖(𝒕, 𝒙) satisfying

ℒ𝑃𝐷𝐸 = 𝑓 𝑢, 𝑢𝑡, 𝑢𝑥, 𝑢𝑥𝑥, … = 0

ℒ𝐼𝐶 = 𝑢 0, 𝑥 −  𝑔 𝑥 = 0

ℒ𝐵𝐶 =  𝑢|𝜕Ω − ℎ(𝑡, 𝑥)|𝜕Ω

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

𝑢𝜃
𝑛𝑛(𝑡, 𝑥)… …𝑔(𝑥)

Neural Network
(function to function 

mapping)

Two main streams on DNN for PDEs



• PIMLs
• (+) easy to implement, applicable to various domains and equations

• (+) unsupervised learning

• (-) predict only a single PDE instance

• (-) Hard to impose a boundary condition

• Operator learning
• (+) predict multiple PDE instances (parametric PDEs)

• (+) can use the Computer Vision architectures

• (-) supervised learning, so require a paired input-output dataset

• (-) low accuracy on unseen data, boundary condition issue

Pros and Cons of major ML approaches 



When applying the spectral element methods, we can obtain an accurate numerical 
solution: 

Legendre-Galerkin Network

where N is the number of the global basis function. In practice, there are 
many feasible choices of the basis functions such as Fourier series 
Chebyshev polynomial               , or Legendre polynomial              . 

For given data (e.g., forcing terms, boundary conditions, etc.), our neural network 
predicts only the coefficients of the basis functions. Subsequently, we generate 
infinitely many datasets through reconstruction:

I will make use of this NPDE framework for my NN approximation!!



Hong et al., IEEE Access (2023), Int. J. Numer. Anal. Model. (2024)

ML + Numerical PDEs

Unsupervised Operator Network



Numerical Results



Linear convection diffusion with small 
viscousity. We expect the boundary layer 
near x=-1. 

Time dependent problem

Hong et al., Comput. Methods Appl. Mech. Eng. (2024)



Predicted solution

2D Kuramoto-Sivashinsky equations 2D Navier-Stokes equations

Predicted solution

Hong et al., Comput. Methods Appl. Mech. Eng. (2024)

2D KS and NSE equations



2D NSE

Incompressible Navier–Stokes equation (NSE) in its vorticity form for a viscous on the unit torus (2D),

Find velocity with



Can we handle general smooth domain?

Hong et al., SIAM Journal on Scientific Computing (2024)

(d) Dolphin

Finite Element Operator Network



Finite Element Operator Network



Numerical Experiments

Hong et al., SIAM Journal on Scientific Computing (2024)



Numerical Experiments



• Limitation: 
• Not reliable yet (error analysis not complete)

• Low accuracy

• Training time is long

• Advantages:
• Overcome curse of dimensionality

• Fast inference

• Inverse problems

• Potential to tackle complex problems

Limitation and Advantages for Sci. ML.
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The convergence of neural networks can be decomposed by

𝑢 − 𝑢𝑛,𝑀,𝑁 = 𝑢 − 𝑢𝑛 + 𝑢𝑛 − 𝑢 𝑛,𝑀 + 𝑢𝑛,𝑀 − 𝑢𝑛,𝑀,𝑁

opt. errorapprox. error gen. error

Convergence of Neural Networks



Convergence Analysis of FEONet



Theorem (FEM Theory)

Theorem (Ko, Lee, and H.)

Convergence analysis of FEONet

P-ℓ element method:



But something weird happens... 

Does this come from ML things? Otherwise, should we dive into details? 

• Why does the phenomenon of errors increasing again at a certain point occur?
• The objective is to investigate the underlying principle of FEONet based on the mathematical analysis. 

Convergence analysis of FEONet



Convergence analysis of FEONet

Hong et al., submitted



Convergence analysis of FEONet

Hong et al., submitted



FEONet analysis



Convergence analysis of FEONet (Preconditioning)

Hong et al., submitted



Thank you!
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