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in unconventional superconductors, different electron cor-
relations and ordered states compete with superconductivity 
[12, 13, 62, 63]. Because these symmetry-breaking orders 
appear at similar temperatures, it was proposed that they 
were entangled and could be considered as intertwined orders 
[63]. Additionally, the re-entrance of the long-range order 
upon the suppression of superconductivity indicates that 
these orders are competing for the same electrons close to 
the Fermi surface. Therefore, understanding this competition 
will reveal more about electron correlations and help draw a 
clearer picture of the pairing mechanism in unconventional 
superconductors.

Early measurements show that spin and charge densities 
are modulated in the hole-doped cuprates, e.g. doped La2CuO4 
(referred to as ‘214’, figure 5(a)). These modulations give rise 
to stripe order [12]. In cuprates, specific hole-doping concen-
trations, together with a low-temperature orthorhombic-to-
tetragonal structural phase transition, result in the suppression 
of superconductivity. A long-standing question, known as the 
‘1/8 problem’, has to do with the anomalous suppression of 
superconductivity in the hole-doped ‘214’ cuprates, which  
has been attributed to strong charge and spin order effects in 
La1.6−xNb0.4SrxCuO4, when the hole doping concentration p in 
the CuO2 plane is equal to 1/8. [12].

Recently, a CDW was observed in YBa2Cu3 δ+O6  (YBCO, 
referred to as the ‘123’ phase, figure 5(b)) when the magnetic 
field suppressed the SC [13]. As was the case in ‘214’, the 
charge density order in ‘123’ has the highest transition temper-
ature close to 1/8 hole doping, where the superconductivity 
transition temperature is partially suppressed. This suppres-
sion results in two SC domes, and suggests a possible QCP 
at this concentration ( p  =  1/8). After the discovery of CDWs 
inside the SC dome, the CDW was also observed outside of 
the superconductivity dome and in the pseudogap region of 
(Y, Nd)Ba2Cu3 δ+O6  by using hard x-rays [51, 64] and soft 
x-ray scattering [52, 65, 66]. These results are testament to the 
comparable energy scales of the CDW and SC.

The similarities and differences between hole-doped 
‘214’ and ‘123’ phases provide clues toward understand-
ing the electron correlations in cuprates. Both phases have 

the strongest charge modulations at the 1/8 doping, where 
Tc is reduced from the optimal value. In the ‘214’ phase, 
the SC is almost completely suppressed and the charge 
modulations have maximum order parameter at p  =  1/8, as 
observed in La1.875Ba0.125CuO4 [62]. In the ‘123’ phase, the 
SC is slightly suppressed and there is a plateau of Tc around 
p  =  1/8 as observed in YBa2Cu3O6.6 [62]. Meanwhile, the 
differences in the CDWs in both phases can also be seen 
by comparing the same ‘214’ and ‘123’ compositions with 
the strongest CDWs, La1.875Ba0.125CuO4 and YBa2Cu3O6.6. 
In the La1.875Ba0.125CuO4 compound, the wave vector of 
the CDW is  ∼0.24 reciprocal lattice units (r.l.u.) along both 
H and K directions [53, 62]. By contrast, the wavevector of 
YBa2Cu3O6.6 is  ∼0.31 r.l.u., and there is a small anisotropy 
between the H and K directions [53]. Furthermore, the charge 
modulation in La1.875Ba0.125CuO4 has a larger order para-
meter value than the one in the YBa2Cu3O6.6, which indicates  
that the CDW is more developed in the former compound. 
It can also be seen that the CDW in YBa2Cu3O6.6 under zero 
field is incomplete and the SC is only partially suppressed by 
the CDW. The CDW also has a different correlation length 
in these two phases,∼250 Å in the doped ‘214’, and  ∼50 Å  
in the doped ‘123’ [53]. Both the magnitude of the order 
parameter and the correlation length indicate that the CDW 
in La1.875Ba0.125CuO4 is stronger and extends wider than the 
one in YBa2Cu3O6.6. These facts are further connected to 
the suppression of SC, and provide a partial explanation for 
the faster suppression of Tc in La1.875Ba0.125CuO4 compared 
to YBa2Cu3O6.6 [62], while emphasizing the competition 
between the CDW and SC states in both doped cuprates.

In light of the asymmetrical behavior with hole- or elec-
tron-doping in cuprates (figure 5), the difference between the 
CDWs in the two types of cuprates is important for under-
standing the competition with SC. Recently, RXS in electron-
doped Nd2−xCeCuO4 [67] revealed the presence of a CDW. 
The results show that the CDW has a wavevector  ∼0.24 
r.l.u. along the H direction, which is close to the wavevector 
observed in hole-doped La1.875Ba0.125CuO4. Additionally, the 
ordering temperature TCDW in electron-doped Nd2−xCeCuO4 
is  ∼340 K, higher than the pseudogap onset temperature. The 

Figure 5. (a) Crystal structure of La2CuO4 (214 phase). (b) Crystal structure of YBa2Cu3O7 (123 phase). (c) Schematic temperature versus 
doping phase diagram for cuprates.
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potential energy surface exploration to generate the dataset of reactions, which has been shown to be successful 
in cases when many reaction pathways have to be evaluated19–21. More specifically, we rely on the growing string 
method22 to automatically optimize reaction paths and TSs.

We report quantum chemical data on more than 16,000 reactions in the form of reactants, products, and 
TSs at the B97-D3/def2-mSVP level of theory and 12,000 reactions at the ωB97X-D3/def2-TZVP level of the-
ory. The data include the raw output from geometry optimizations and frequency calculations in addition to 
atom-mapped SMILES, activation energies, and enthalpies of reaction. All reactions are gas-phase calculations 
involving up to seven carbon, oxygen, or nitrogen atoms per molecule. The reactants are sampled from GDB-7, 
a subset of GDB-1723, meaning that all reactions have a unimolecular reactant but potentially multi-molecular 
products. Figure 1 illustrates the dataset generation process and the resulting space of reactions in terms of their 
activation energies and enthalpies of reaction.

Methods
Overview. The dataset generation procedure started by selecting molecules from GDB-723, generating con-
formers, and optimizing the lowest-energy conformer. An exhaustive set of driving coordinates subject to valence 
and connectivity constraints were generated for each reaction. Reaction paths were calculated with the growing 
string method22, which searched along each of the driving coordinates. Products and TSs discovered in this way 
were reoptimized, duplicate reactions were removed, and checks were performed to verify the reactions. The gen-
erated reactions were then refined at a higher level of theory. Because of the large number of density functional 
theory (DFT) calculations required, the massively parallel nature of the calculations was exploited by running 
thousands of calculations in parallel on a supercomputer.

Reactant optimization. Because of the unfavorable scaling of quantum chemical calculations, we only con-
sidered molecules with at most seven heavy atoms (C, N, O). All molecules with six or fewer heavy atoms were 
selected from GDB-7 (~770) and a random selection of ~430 molecules were selected from the set with seven 
heavy atoms. Starting from the SMILES strings, we embedded several hundred conformers for each molecule 
using the RDKit24 with the ETKDG distance geometry method25 and relaxed their geometries using the MMFF94 
force field implemented in RDKit. The lowest energy structure was selected for each molecule and optimized at 
both the B97-D3/def2-mSVP with Becke-Johnson damping level of theory26 and the ωB97X-D3/def2-TZVP27 
level of theory with Q-Chem 5.128. We ascertained that none of the molecules contained imaginary frequencies. 
All calculations, including the subsequent string method calculations, were done in the singlet state and used a 
spin-unrestricted ansatz because the bond distortions occurring in the corresponding TSs might be better treated 
with an unrestricted formulation. The def2-mSVP basis set in the Karlsruhe def2 basis set family29 is a modified 
version of def2-SV(P), which corrects for an overestimation of bond lengths involving hydrogen30. All DFT calcu-
lations used the SG-2 standard quadrature grid, which is of sufficient quality for B97-based functionals31.

Potential energy surface exploration. The most demanding and most time-intensive step of the reaction 
generation process is the optimization of reaction paths to the minimum energy paths (MEPs) containing the 
correct TS structures. We accomplished this in an automated fashion by using the single-ended growing string 
method (GSM)22 at the B97-D3/def2-mSVP level of theory. GSM performs the reaction path optimization using 
a set of delocalized internal coordinates, which means that the resulting MEPs may be slightly different than those 
obtained via a reaction path following procedure in mass-weighted internal coordinates32. Single-ended methods 

Fig. 1 Reaction data generation and visualization of reaction space. During data generation, many reactants are 
optimized, hundreds of reaction paths for each reactant are searched with an automated transition state finding 
method, and the resulting products are optimized. The reaction space spans a wide range of activation energies 
and is visualized with a bivariate kernel density estimate (using a Gaussian kernel) of the probability density 
of the activation energy and enthalpy of reaction. The visualization encompasses both forward and reverse 
reactions.
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An overview of the QCD phase diagram at finite ) and ` Jana N. Guenther

Figure 1: A schematic view on the )-`⌫-plane of the QCD phase diagram.

1. Introduction

The behaviour of QCD matter under di�erent influences has been an active research topic for
many years. The e�ects of di�erent temperatures and densities are summerized in the )-`-plane of
the QCD phasediagram which is schematicly displayed in figure 1. The investigation of its structure
has seen segnificant progress in recent years broth in experiments and theory.

Most experimental insights are gained from heavy ion collisions, most prominently done with
gold or lead at the LCH and RHIC. Here two beams of heavy ions are collided at relativistic
velocities, forming an out of equilibrium state, the so called glasma, which can be described as
a color glass condensate (see for example Ref. [1, 2]). Further fragmentation into quarks and
gluons lead to the quark gluon plasma. This is a state of deconfined quarks and gluons that
exhibits similarities with a strongly interacting fluid and is therefore often treated in the framework
of relativisic hydrodynamics. After its formation the quark gluon plasma cools down again while
expanding. When the quarks and gluons, which were in a deconfined state in the quark gluon plasma,
recombine to colour-neutral hadrons, the chemical abundance of the di�erent hadron species is fixed.
This is called chemical freezout and it is assumed to take place at a similar temperature as the QCD
transition. Even after the chemical freezout, the hadrons still can exchange momentum and energy.
The time when this exchange comes to a stop is called kinetic feezeout.

On the theory side, lattice QCD is an obvious tool to investigate the phase diagram. It
solves QCD with controllable errors, which allows for reliable predictions. Results from QCD
thermodynamics in thermal equilibrium can be obtained with high precision for vanishing chemical
potential. However, the investigation of finite densities is complicated by the infamous sign problem.
Other non-perturbative methods like Dyson-Schwinger-Equations or Functional Renmormalization
Groups do not encounter the sign problem, but fail to determine a reliable error.

Since lattice QCD simulates quantities in thermal equilibrium, the question at which states
the quark gluon plasma (or the hadrons) is thermalized is very important for comparisons between
experimental and lattice QCD results. The state of the glasma does not thermalize and is therefore
di�cult to investigate with lattice QCD.

This proceedings will focus on the review of recent progress obtained from lattice QCD. A
focus will be on results with physical parameters at low finite `⌫ by extrapolations from zero or
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Cannot be described by treating particles independently.

Correlations in many-body systems give rise to  
emergent collective quantum phenomena



Complexity of quantum physics
Quantum state:  
complex vector in Hilbert space: exponential (in # particles) = superposition


Entanglement:  
no simple factorization into subsystems: consider entire system


Quantum statistics (Bose-Einstein or Fermi-Dirac statistics)
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⌘k

k!
=

KY

k=1

⇣
1� ick�tĤ
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Fundamental open questions: 
Dynamics: How do quantum systems thermalize or fail to thermalize? 
Phases of matter in the strongly correlated & frustrated regime? 
Non-equilibrium dynamics of thermal states and behavior under perturbations? 
…
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Numerical methods will play a major role in providing answers!
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MANY-BODY PHYSICS

Variational benchmarks for quantum
many-body problems
Dian Wu1,2, Riccardo Rossi1,3, Filippo Vicentini2,4,5, Nikita Astrakhantsev6, Federico Becca7,
Xiaodong Cao8, Juan Carrasquilla9,10, Francesco Ferrari11, Antoine Georges4,5,8,12,
Mohamed Hibat-Allah9,13,14,15, Masatoshi Imada16,17,18,19, Andreas M. Läuchli1,20, Guglielmo Mazzola21,
Antonio Mezzacapo22, Andrew Millis8,23, Javier Robledo Moreno8,24, Titus Neupert6, Yusuke Nomura25,26,
Jannes Nys1,2, Olivier Parcollet8,27, Rico Pohle17,19, Imelda Romero1,2, Michael Schmid17,
J. Maxwell Silvester28, Sandro Sorella29†, Luca F. Tocchio30, Lei Wang31,32, Steven R. White28,
Alexander Wietek33, Qi Yang31,34, Yiqi Yang35, Shiwei Zhang8, Giuseppe Carleo1,2*

The continued development of computational approaches to many-body ground-state problems in physics and
chemistry calls for a consistent way to assess its overall progress. In this work, we introduce a metric of
variational accuracy, theV-score, obtained from the variational energy and its variance. We provide an extensive
curated dataset of variational calculations of many-body quantum systems, identifying cases where state-of-
the-art numerical approaches show limited accuracy and future algorithms or computational platforms, such as
quantum computing, could provide improved accuracy. The V-score can be used as a metric to assess the
progress of quantum variational methods toward a quantum advantage for ground-state problems, especially in
regimes where classical verifiability is impossible.

A
key aspect of the quantum many-body
problem, for systems ranging from the
subatomic to molecules and materials,
is determining the ground-state proper-
ties and energy. Knowing the ground

state, one can predict which systems are stable
and whether these systems exhibit useful and
exotic phases, such as superconductivity or spin
liquid states. However, because of the exponen-
tial complexity of the quantum wave function,
finding the ground state of amany-body system
can be very challenging, which limits exact nu-
merical studies to a small number of particles.
Efficiently solving the general ground-state prob-
lem is largely believed tobe intractable.However,
this does not necessarily apply to any particular

system or class of systems, which may admit
powerful approximations for ground states.
Decades of research have focused on devising
computational methods to find approximate
solutions for specific cases of interest.
These computational methods have widely

varying degrees of accuracy, and typically each
method is much more successful on some sys-
tems than on others. Some of the most widely
used methods include quantumMonte Carlo
(QMC) (1–3), tensor networks (TNs) (4, 5), and
dynamical mean field theory (DMFT) and its
extensions (6, 7). It is known that the appli-
cability of QMCmethods is negatively affected
by the frustration of the quantum system and
particle statistics (8); similarly, high entangle-

ment and large correlation lengths limit the
applicability of TNs (9) and DMFT (7), respec-
tively. Variational approaches based on physi-
cally motivated ansatzes (10, 11) or neural
networks (12) are not explicitly affected by the
aforementioned issues. However, it is more dif-
ficult to assess their applicability and accuracy
for a given quantum many-body system.
Quantum computers provide an alternative

platform to attack quantum many-body prob-
lems (13). Notably, the dynamics of quantum
many-body systems canbe efficiently simulated
by a digital quantum computer when the initial
states are easy to prepare (14). Besides dynam-
ics, substantial attention has been devoted to
preparing ground states that are difficult to
study with classical algorithms. Quantum algo-
rithms for this task include phase estimation
(15), variational approaches (16–19), adiabatic
passage (20), imaginary time evolution (21), and
subspace and Lanczos methods (22, 23).
A fundamental challenge in assessing newly

established computational methods based on
classical or quantum computing is defining a
consistent accuracymetric. Especially for ground-
state problems, such a metric is necessary to
clearly identify target Hamiltonians of broad
interest, which cannot be solved with sufficient
accuracy by existing methods. Also, this metric
is crucial to quantify the improvements of com-
putational approacheswith time. In the context
of assessing quantum computing–based
methods, this issue pertains to the broader
problem of determining in what cases quan-
tum computers have an advantage over classi-
cal ones (24, 25).
Determining a consistent metric for physi-

cally and chemically relevant ground-state prob-
lems is one of the goals of this work. To this end,
we provide a large, curated collection of varia-
tional and numerically exact results on strongly
correlated lattice models obtained by both
state-of-the-art and baselinemethods. The data
that we provide include multiple approaches,
such as exact diagonalization (ED), QMC (1)
in the auxiliary field algorithm (26–30), matrix
product states (MPSs) (4), variational wave func-
tion formulated on a lattice (31), and neural
network–based methods (12). In addition to
providing the data, we introduce an indicator
of the variational accuracy of these results,
named the V-score, that is suitable for directly
comparing classical and quantum computing–
based variational approaches. The V-score, ob-
tained as a combination of the mean energy
and its variance of a given variational state,
allows us to identify what Hamiltonians and
regimes are hard to approximate with classi-
cal variational methods without prior knowl-
edge of the exact solution. Furthermore, we
argue that theV-score canbeusedas a controlled
benchmark to quantify the continued progress
of quantum algorithms and quantum hardware
to simulate those challenging targetHamiltonians.
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Neural networks excel in  
Compressing high dimensional functions      large Hilbert space

Efficiently representing strong correlations    strong entanglement 
Efficient gradients (backprop)                         variational optimization

→
→
→

→
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h |Ĥ| i

h | i
=

h@✓ |Ĥ| i
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Ĥ � E⌧

⌘
p⌧ (18)

@p⌧
@⌧

= rx · (p⌧v⌧ ) (19)

F✓ = @✓
h |Ĥ| i
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[Ĥ ](s)

 (s)
� E

!#
(21)

E =
h |Ĥ| i
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RESEARCH ARTICLE
◥

MANY-BODY PHYSICS

Solving the quantum many-body
problem with artificial
neural networks
Giuseppe Carleo1* and Matthias Troyer1,2

The challenge posed by the many-body problem in quantum physics originates from the
difficulty of describing the nontrivial correlations encoded in the exponential complexity
of the many-body wave function. Here we demonstrate that systematic machine learning of
the wave function can reduce this complexity to a tractable computational form for some
notable cases of physical interest. We introduce a variational representation of quantum
states based on artificial neural networks with a variable number of hidden neurons.
A reinforcement-learning scheme we demonstrate is capable of both finding the ground
state and describing the unitary time evolution of complex interacting quantum systems.
Our approach achieves high accuracy in describing prototypical interacting spins models in
one and two dimensions.

T
he wave function Y is a fundamental ob-
ject in quantum physics and possibly the
hardest to grasp in the classical world. Y
is a monolithic mathematical quantity that
contains all of the information on a quan-

tum state, be it a single particle or a complex
molecule. In principle, an exponential amount
of information is needed to fully encode a ge-
neric many-body quantum state. However, wave
functions representing many physical many-body
systems can be characterized by an amount of
information much smaller than the maximum
capacity of the corresponding Hilbert space. A
limited amount of quantum entanglement and
a small number of physical states in such sys-
tems enable modern approaches to solve the
many-body Schrödinger’s equation with a limited
amount of classical resources.
Numerical approaches directly relying on the

wave function can either sample a finite num-
ber of physically relevant configurations or per-
form an efficient compression of the quantum
state. Stochastic approaches, like quantumMonte
Carlo (QMC) methods, belong to the first cat-
egory and rely on probabilistic frameworks typ-
ically demanding a positive semidefinite wave
function (1–3). Compression approaches instead
rely on efficient representations of the wave func-
tion, such as in terms of matrix product states
(MPS) (4–6) or more general tensor networks
(7–9). However, examples of systems in which
existing approaches fail are numerous, mostly
owing to the sign problem in QMC (10) and
to the inefficiency of current compression ap-
proaches in high-dimensional systems. As a result,
despite the notable success of these methods,

a large number of unexplored regimes exist, in-
cluding many open problems. These encompass
fundamental questions ranging from the dyna-
mical properties of high-dimensional systems
(11, 12) to the exact ground-state properties of
strongly interacting fermions (13, 14). At the heart
of this lack of understanding lies the difficulty
in finding a general strategy to reduce the ex-
ponential complexity of the full many-body wave
function down to its most essential features (15).
In a much broader context, the problem re-

sides in the realm of dimensional reduction and
feature extraction. Among the most successful

techniques to attack these problems, artificial
neural networks play a prominent role (16). They
can perform exceedingly well in a variety of con-
texts ranging from image and speech recognition
(17) to game playing (18). Very recently, appli-
cations of neural networks to the study of phy-
sical phenomena have been introduced (19–23).
These have so far focused on the classification
of complex phases of matter, when exact sampling
of configurations from these phases is possible.
The challenging goal of solving a many-body
problem without prior knowledge of exact sam-
ples is nonetheless still unexplored, and the po-
tential benefits of artificial intelligences in this
task are, at present, substantially unknown.
Therefore, it is of fundamental and practical in-
terest to understand whether an artificial neural
network can modify and adapt itself to describe
and analyze such a quantum system. This abil-
ity could then be used to solve the quantum
many-body problem in regimes that have tra-
ditionally been inaccessible to existing exact nu-
merical approaches.
Here we introduce a representation of the wave

function in terms of artificial neural networks
specified by a set of internal parametersW. We
present a stochastic framework for reinforce-
ment learning of the parametersW, allowing for
the best possible representation of both ground-
state and time-dependent physical states of a
given quantum Hamiltonian H. The parame-
ters of the neural network are then optimized
(trained, in the language of neural networks),
either by static variational Monte Carlo (VMC)
sampling (24) or time-dependent VMC (25, 26),
when dynamical properties are of interest. We
validate the accuracy of this approach by study-
ing the Ising and Heisenberg models in both one
and two dimensions. The power of the neural-
network quantum states (NQS) is demonstrated,
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Fig. 1. Artificial neural network encoding a many-body quantum state of N spins. A restricted
Boltzmann machine architecture that features a set of N visible artificial neurons (yellow dots) and a
set of M hidden neurons (gray dots) is shown. For each value of the many-body spin configuration
S ¼ ðsz

1; s
z
2;… ; sz

N Þ, the artificial neural network computes the value of the wave function YðSÞ.
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representation | ✓i, where the wave function is encoded
into a set of internal parameters ✓ of a neural network
(the number of which generally grows exponentially for
a generic quantum state). The encoded state is then
a highly nonlinear function which returns a complex-
valued coefficient  ✓(�), for any input state |�i. The
optimal set of parameters which best approximates the
wave function is found by training the neural network
with a “learning” procedure. For example, this could be
the variational minimization of the total energy [3, 13].
Alternatively, training can occur via standard machine
learning procedures, if an appropriate data set is avail-
able [12]. Depending on the complexity of the state to
be encoded, different numbers of network parameters will
be required, which naturally quantifies a convergence pa-
rameter for the algorithm.

In analogy to this, we define the NDO as a mapping
⇢✓ that, given two input states |�i and |�0i, returns
the matrix element ⇢✓(�,�0). For a NDO to describe a
physical state, its matrix representation must have unit
trace Tr�{⇢✓} = 1, must be Hermitian ⇢✓ = ⇢†

✓, and
must be positive semidefinite hx|⇢✓|xi � 0 8|xi. These
constraints can be satisfied by constructing the NDO
from the purification of its Hilbert space with a system
of na auxiliary degrees of freedom a = (a1, . . . , ana),
so that its composite state ⇢��a

✓ is pure, and there-
fore ⇢��a

✓ = | ✓ih ✓|, with a neural network wave
function | ✓i =

P
�a  ✓(�,a)|�i ⌦ |ai. The NDO is

then simply obtained by tracing out the auxiliary system
⇢✓ = Tra{| ✓ih ✓|}, obtaining the density matrix

⇢✓(�,�
0) =

X

a

 ✓(�,a) 
⇤
✓(�

0,a). (1)

While the nature of the auxiliary system is arbitrary, a
RBM provides a very convenient method for encoding
both the physical and auxiliary degrees of freedom. A
standard RBM contains two layers of stochastic binary
units, a visible or physical layer, and a hidden or la-
tent layer h. The two layers are connected by a set of
weighted edges, and each unit is also coupled to an ex-
ternal field (or bias). Here, we embed the auxiliary units
used for the purification in the hidden layer of the neural
network, which is thus enlarged to (h,a). The RBM as-
sociates to this graph structure a Boltzmann probability
distribution p✓(�,a,h), where the network parameters
are ✓ = {W✓,U✓, b✓, c✓,d✓} (see Fig. 1). Thee distribu-
tion describing the composite (pure) system is obtained
by integrating out the hidden variables h:

p✓(�,a) = e
P

i log(1+eW
[i]
✓

�+c
[i]
✓ )+a>U✓�+b>

✓ �+d>
✓ a (2)

with W [i]
✓ and c[i]✓ begin the ith rows of the weight matrix

and hidden field. We define the quantum state of the
composite system using two sets of parameters ✓ = (�,µ)
describing amplitudes and phases respectively:

 �µ(�,a) = Z
� 1

2
�

p
p�(�,a)e

i�µ(�,a) (3)

W� Wµ

�

UµU�

a a

h h

Environment

System

Figure 1. Graphical representation of the neural density oper-
ator. The visible layer (green) encodes the state of the phys-
ical system �, while the other two layers are used to describe
the mixing due to the environment (red), and to capture the
correlations between the physical degrees of freedom (blue).

where �µ(�,a) = log pµ(�,a)/2 and Z� =P
�a p�(�,a) is a constant enforcing normalization.
Since the auxiliary units are embedded in the latent

space of the network, we can perform the summation in
Eq. (1) exactly, obtaining ⇢�µ = Z�1

� ⇢̃�µ with unnor-
malized matrix elements

⇢̃�µ(�,�
0) = e�

[+]
� (�,�0)+i�[�]

µ (�,�0)+⇧�µ(�,�0) (4)

Here we have introduced the matrices

�[±]
✓ (�,�0) =

1

2

X

i

log(1 + eW
[i]
✓ �+c[i]

✓ )

±
X

i

log(1 + eW
[i]
✓ �0+c[i]

✓ ) + b>✓ (� ± �0)

�

(5)

and

⇧�µ(�,�
0) =

X

k

log

✓
1 + exp


1

2
U [k]

� (� + �0)

+
i

2
U [k]

µ (� � �0) + d[k]
�

�◆
.

(6)

Note in particular, that the two weight matrices U� and
Uµ encode the mixing of the physical system with the
auxiliary system. In the case where both are set to zero,
the state  ✓(�,a) becomes separable and the resulting
NDO describes a pure state.

Before we turn to the machine learning procedure that
allows us to reconstruct a physical state, let us further
examine the RBM parametrization of the density matrix.
First, note that given a NDO ⇢�µ, it is possible to com-
pute the expectation value of any observable O acting on
the physical degrees of freedom |�i, provided its matrix
representation O��0 is sparse in that basis (i.e. the num-
ber of nonzero elements scales subexponentially with N).
This can be done simply by considering the observable

Density matrices
Torlai & Melko, PRL, 2018

1

⇢(s, s0) =
X

{h}

 (s, h) ⇤(s0, h) (1)

| i = c",",...," |", ", . . . , "i+ c",",...,# |", ", . . . , #i+ · · ·+ c#,#,...,# |#, #, . . . , #i 2 C2N (2)

| i =
X

si2{",#}

 (s1, ..., sN ) |s1, ..., sN i 2 C2N (3)

⇢ =
X

s2{",#}N

X

s02{",#}N

⇢(s, s0) |si hs0| 2 C2N⇥2N (4)

vi = W · ri (5)

ri (6)

rij (7)

qi = ri +W · h(T )
i (8)

qi = ri +NN(r1, ..., rN ) (9)

qi = ri +
X

j 6=i

f (kri � rjk) (ri � rj) (10)

fL � · · · � f1
⇣
P̂i$jr

⌘
= P̂i$j � fL � · · · � f1 (r) (11)

= P̂i$jq (12)

NN(s) ⇡
e��E(s)

Z(�)
(13)

 (r1, ..., rN ) = det

2

64
�1(q1) . . . �1(qN )

...
. . .

...
�N (q1) . . . �N (qN )

3

75 (14)

fL � · · · � f1(r1, . . . , rN ) = [q1, . . . ,qN ] (15)

pt(s) = | (s, t)|2 (16)

10

Continuous space Pfau, et al, PRR 2020 & Hermann, et al, NatChem (2020)
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+1

<latexit sha1_base64="+fB4vLmiNApqCusqbfXgHyzHHuU=">AAAB6XicbVDLSgNBEOz1GeMr6tHLYBC8GHbF1zHoxWMU84BkCbOT3mTI7OwyMyuEJX/gxYMiXv0jb/6Nk2QPmljQUFR1090VJIJr47rfztLyyuraemGjuLm1vbNb2ttv6DhVDOssFrFqBVSj4BLrhhuBrUQhjQKBzWB4O/GbT6g0j+WjGSXoR7QvecgZNVZ6OPW6pbJbcacgi8TLSRly1Lqlr04vZmmE0jBBtW57bmL8jCrDmcBxsZNqTCgb0j62LZU0Qu1n00vH5NgqPRLGypY0ZKr+nshopPUoCmxnRM1Az3sT8T+vnZrw2s+4TFKDks0WhakgJiaTt0mPK2RGjCyhTHF7K2EDqigzNpyiDcGbf3mRNM4q3mXl4v68XL3J4yjAIRzBCXhwBVW4gxrUgUEIz/AKb87QeXHenY9Z65KTzxzAHzifP+cijPY=</latexit>�1

<latexit sha1_base64="8iNQvDPTucfWIf0t77cf4ymzpR0=">AAAB6XicbVDLSgNBEOz1GeMr6tHLYBAEIeyKr2PQi8co5gHJEmYnvcmQ2dllZlYIS/7AiwdFvPpH3vwbJ8keNLGgoajqprsrSATXxnW/naXlldW19cJGcXNre2e3tLff0HGqGNZZLGLVCqhGwSXWDTcCW4lCGgUCm8HwduI3n1BpHstHM0rQj2hf8pAzaqz0cOp1S2W34k5BFomXkzLkqHVLX51ezNIIpWGCat323MT4GVWGM4HjYifVmFA2pH1sWypphNrPppeOybFVeiSMlS1pyFT9PZHRSOtRFNjOiJqBnvcm4n9eOzXhtZ9xmaQGJZstClNBTEwmb5MeV8iMGFlCmeL2VsIGVFFmbDhFG4I3//IiaZxVvMvKxf15uXqTx1GAQziCE/DgCqpwBzWoA4MQnuEV3pyh8+K8Ox+z1iUnnzmAP3A+fwDkGIz0</latexit>

+1

<latexit sha1_base64="8iNQvDPTucfWIf0t77cf4ymzpR0=">AAAB6XicbVDLSgNBEOz1GeMr6tHLYBAEIeyKr2PQi8co5gHJEmYnvcmQ2dllZlYIS/7AiwdFvPpH3vwbJ8keNLGgoajqprsrSATXxnW/naXlldW19cJGcXNre2e3tLff0HGqGNZZLGLVCqhGwSXWDTcCW4lCGgUCm8HwduI3n1BpHstHM0rQj2hf8pAzaqz0cOp1S2W34k5BFomXkzLkqHVLX51ezNIIpWGCat323MT4GVWGM4HjYifVmFA2pH1sWypphNrPppeOybFVeiSMlS1pyFT9PZHRSOtRFNjOiJqBnvcm4n9eOzXhtZ9xmaQGJZstClNBTEwmb5MeV8iMGFlCmeL2VsIGVFFmbDhFG4I3//IiaZxVvMvKxf15uXqTx1GAQziCE/DgCqpwBzWoA4MQnuEV3pyh8+K8Ox+z1iUnnzmAP3A+fwDkGIz0</latexit>

+1

<latexit sha1_base64="+fB4vLmiNApqCusqbfXgHyzHHuU=">AAAB6XicbVDLSgNBEOz1GeMr6tHLYBC8GHbF1zHoxWMU84BkCbOT3mTI7OwyMyuEJX/gxYMiXv0jb/6Nk2QPmljQUFR1090VJIJr47rfztLyyuraemGjuLm1vbNb2ttv6DhVDOssFrFqBVSj4BLrhhuBrUQhjQKBzWB4O/GbT6g0j+WjGSXoR7QvecgZNVZ6OPW6pbJbcacgi8TLSRly1Lqlr04vZmmE0jBBtW57bmL8jCrDmcBxsZNqTCgb0j62LZU0Qu1n00vH5NgqPRLGypY0ZKr+nshopPUoCmxnRM1Az3sT8T+vnZrw2s+4TFKDks0WhakgJiaTt0mPK2RGjCyhTHF7K2EDqigzNpyiDcGbf3mRNM4q3mXl4v68XL3J4yjAIRzBCXhwBVW4gxrUgUEIz/AKb87QeXHenY9Z65KTzxzAHzifP+cijPY=</latexit>�1

<latexit sha1_base64="8iNQvDPTucfWIf0t77cf4ymzpR0=">AAAB6XicbVDLSgNBEOz1GeMr6tHLYBAEIeyKr2PQi8co5gHJEmYnvcmQ2dllZlYIS/7AiwdFvPpH3vwbJ8keNLGgoajqprsrSATXxnW/naXlldW19cJGcXNre2e3tLff0HGqGNZZLGLVCqhGwSXWDTcCW4lCGgUCm8HwduI3n1BpHstHM0rQj2hf8pAzaqz0cOp1S2W34k5BFomXkzLkqHVLX51ezNIIpWGCat323MT4GVWGM4HjYifVmFA2pH1sWypphNrPppeOybFVeiSMlS1pyFT9PZHRSOtRFNjOiJqBnvcm4n9eOzXhtZ9xmaQGJZstClNBTEwmb5MeV8iMGFlCmeL2VsIGVFFmbDhFG4I3//IiaZxVvMvKxf15uXqTx1GAQziCE/DgCqpwBzWoA4MQnuEV3pyh8+K8Ox+z1iUnnzmAP3A+fwDkGIz0</latexit>

+1
<latexit sha1_base64="csVbf27Va8uZv6qb9x+smyfYvK8=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48V7Ae0oWw2m3bpZjfsbgol9Ed48aCIV3+PN/+NmzYHbX0w8Hhvhpl5QcKZNq777ZQ2Nre2d8q7lb39g8Oj6vFJR8tUEdomkkvVC7CmnAnaNsxw2ksUxXHAaTeY3Od+d0qVZlI8mVlC/RiPBIsYwcZK3cE0lEZXhtWaW3cXQOvEK0gNCrSG1a9BKEkaU2EIx1r3PTcxfoaVYYTTeWWQappgMsEj2rdU4JhqP1ucO0cXVglRJJUtYdBC/T2R4VjrWRzYzhibsV71cvE/r5+a6NbPmEhSQwVZLopSjoxE+e8oZIoSw2eWYKKYvRWRMVaYGJtQHoK3+vI66VzVvet647FRa94VcZThDM7hEjy4gSY8QAvaQGACz/AKb07ivDjvzseyteQUM6fwB87nDwUOj18=</latexit>...

<latexit sha1_base64="5a3jtcUqnyUp6j2FJhbbgZl2/AM=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF49V7Ae0oWy2m3bpZhN2J0IJ/QdePCji1X/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilh960X664VXcOskq8nFQgR6Nf/uoNYpZGXCGT1Jiu5yboZ1SjYJJPS73U8ISyMR3yrqWKRtz42fzSKTmzyoCEsbalkMzV3xMZjYyZRIHtjCiOzLI3E//zuimG134mVJIiV2yxKEwlwZjM3iYDoTlDObGEMi3srYSNqKYMbTglG4K3/PIqaV1Uvctq7b5Wqd/kcRThBE7hHDy4gjrcQQOawCCEZ3iFN2fsvDjvzseiteDkM8fwB87nD6F6jXA=</latexit>

} <latexit sha1_base64="wvjSDNPAlw7MJ7zGQJQtM/ZNfRc=">AAACAXicbVDLSsNAFL2pr1pfVZduBovgqiTia1l047KCfUAbymQ6acdOJmFmUgyhK3/Arf6BO3Hrl/gDfoeTNgvbeuDC4Zx7ufceL+JMadv+tgorq2vrG8XN0tb2zu5eef+gqcJYEtogIQ9l28OKciZoQzPNaTuSFAcepy1vdJv5rTGVioXiQScRdQM8EMxnBGsjNbtjL32a9MoVu2pPgZaJk5MK5Kj3yj/dfkjigApNOFaq49iRdlMsNSOcTkrdWNEIkxEe0I6hAgdUuen02gk6MUof+aE0JTSaqn8nUhwolQSe6QywHqpFLxP/8zqx9q/dlIko1lSQ2SI/5kiHKHsd9ZmkRPPEEEwkM7ciMsQSE20CmtsSDRPFiMqCcRZjWCbNs6pzWb24P6/UbvKIinAEx3AKDlxBDe6gDg0g8Agv8Apv1rP1bn1Yn7PWgpXPHMIcrK9fdfOYTA==</latexit>x

<latexit sha1_base64="sUN00jiD+93tNaisvxfVKlVxagg=">AAACA3icbVDJSgNBEO1xjXEb9aaXxiB4CjPidgx68SJENAskIfR0KkmT7pmhu0YMQ8CLv+LFgyJe/Qlv/o2d5aCJDwoe71VRVS+IpTDoed/O3PzC4tJyZiW7ura+selubZdNlGgOJR7JSFcDZkCKEEooUEI11sBUIKES9C6HfuUetBFReIf9GBqKdULRFpyhlZrubh3hAbVKryMJPJFM09u+QVBm0HRzXt4bgc4Sf0JyZIJi0/2qtyKeKAiRS2ZMzfdibKRMo+ASBtl6YiBmvMc6ULM0ZApMIx39MKAHVmnRdqRthUhH6u+JlClj+iqwnYph10x7Q/E/r5Zg+7yRijBOEEI+XtROJMWIDgOhLaGBo+xbwrgW9lbKu0wzjja2rA3Bn355lpSP8v5p/uTmOFe4mMSRIXtknxwSn5yRArkiRVIinDySZ/JK3pwn58V5dz7GrXPOZGaH/IHz+QMJMpht</latexit>

Molecular Systems

<latexit sha1_base64="E/W1xs8u0lp1EB5MVtxKIuTs5uo=">AAACEHicbVDLSsNAFJ3UV62vaJdugkWom5KIr2XRjcsK9gFNCJPppBk6eTBzUwyhP+EPuNU/cCdu/QN/wO9w2mZhWw9cOJxzL+dyvIQzCab5rZXW1jc2t8rblZ3dvf0D/fCoI+NUENomMY9Fz8OSchbRNjDgtJcIikOP0643upv63TEVksXRI2QJdUI8jJjPCAYluXrVTiRzbQgo4Lo99vKnyZmr18yGOYOxSqyC1FCBlqv/2IOYpCGNgHAsZd8yE3ByLIARTicVO5U0wWSEh7SvaIRDKp189vzEOFXKwPBjoSYCY6b+vchxKGUWemozxBDIZW8q/uf1U/BvnJxFSQo0IvMgP+UGxMa0CWPABCXAM0UwEUz9apAAC0xA9bWQkgSZZEROVDHWcg2rpHPesK4alw8XteZtUVEZHaMTVEcWukZNdI9aqI0IytALekVv2rP2rn1on/PVklbcVNECtK9fspudyQ==</latexit>

 ✓(x)
<latexit sha1_base64="wvjSDNPAlw7MJ7zGQJQtM/ZNfRc=">AAACAXicbVDLSsNAFL2pr1pfVZduBovgqiTia1l047KCfUAbymQ6acdOJmFmUgyhK3/Arf6BO3Hrl/gDfoeTNgvbeuDC4Zx7ufceL+JMadv+tgorq2vrG8XN0tb2zu5eef+gqcJYEtogIQ9l28OKciZoQzPNaTuSFAcepy1vdJv5rTGVioXiQScRdQM8EMxnBGsjNbtjL32a9MoVu2pPgZaJk5MK5Kj3yj/dfkjigApNOFaq49iRdlMsNSOcTkrdWNEIkxEe0I6hAgdUuen02gk6MUof+aE0JTSaqn8nUhwolQSe6QywHqpFLxP/8zqx9q/dlIko1lSQ2SI/5kiHKHsd9ZmkRPPEEEwkM7ciMsQSE20CmtsSDRPFiMqCcRZjWCbNs6pzWb24P6/UbvKIinAEx3AKDlxBDe6gDg0g8Agv8Apv1rP1bn1Yn7PWgpXPHMIcrK9fdfOYTA==</latexit>x

<latexit sha1_base64="wvjSDNPAlw7MJ7zGQJQtM/ZNfRc=">AAACAXicbVDLSsNAFL2pr1pfVZduBovgqiTia1l047KCfUAbymQ6acdOJmFmUgyhK3/Arf6BO3Hrl/gDfoeTNgvbeuDC4Zx7ufceL+JMadv+tgorq2vrG8XN0tb2zu5eef+gqcJYEtogIQ9l28OKciZoQzPNaTuSFAcepy1vdJv5rTGVioXiQScRdQM8EMxnBGsjNbtjL32a9MoVu2pPgZaJk5MK5Kj3yj/dfkjigApNOFaq49iRdlMsNSOcTkrdWNEIkxEe0I6hAgdUuen02gk6MUof+aE0JTSaqn8nUhwolQSe6QywHqpFLxP/8zqx9q/dlIko1lSQ2SI/5kiHKHsd9ZmkRPPEEEwkM7ciMsQSE20CmtsSDRPFiMqCcRZjWCbNs6pzWb24P6/UbvKIinAEx3AKDlxBDe6gDg0g8Agv8Apv1rP1bn1Yn7PWgpXPHMIcrK9fdfOYTA==</latexit>x

<latexit sha1_base64="1s2l+vKUbXr9cqho1YPQeKgZHdI=">AAACH3icbVC7TsNAEDzzfmOgpDklQoImshGvEkFDCRJJkOIQnS/r+MT5obs1wjLp+Q1+gBb+gA7R5gf4Di7BBQmMtNJoZle7O34qhUbHGVhT0zOzc/MLi0vLK6tr6/bGZkMnmeJQ54lM1I3PNEgRQx0FSrhJFbDIl9D0786HfvMelBZJfI15Cu2I9WIRCM7QSB274kkI8NFLteh4GAKyXe/eLx76e54SvRAfb/c7dtWpOSPQv8QtSZWUuOzYX1434VkEMXLJtG65TortgikUXEJ/ycs0pIzfsR60DI1ZBLpdjH7p0x2jdGmQKFMx0pH6e6JgkdZ55JvOiGGoJ72h+J/XyjA4aRciTjOEmP8sCjJJMaHDYGhXKOAoc0MYV8LcSnnIFONo4hvbkoa5Flz3TTDuZAx/SWO/5h7VDq8OqqdnZUQLZJtUyC5xyTE5JRfkktQJJ0/khbySN+vZerc+rM+f1imrnNkiY7AG3x7jpGg=</latexit> | 
✓
(x
)|2

<latexit sha1_base64="QdkO5lVeO9+SpxI0r0pzUK+QXPQ=">AAACD3icbVDLSsNAFJ3UV62vWJdugkVwVRLxtSy6cVnBPqANZTKdtkNnJmHmjjSEfoQ/4Fb/wJ249RP8Ab/DpM3Cth64cDjnXs7lBBFnGlz32yqsrW9sbhW3Szu7e/sH9mG5qUOjCG2QkIeqHWBNOZO0AQw4bUeKYhFw2grGd5nfeqJKs1A+QhxRX+ChZANGMKRSzy53gU5AiYSEEpg0Rkx7dsWtujM4q8TLSQXlqPfsn24/JEZQCYRjrTueG4GfYAWMcDotdY2mESZjPKSdlEosqPaT2e9T5zRV+s4gVOlIcGbq34sEC61jEaSbAsNIL3uZ+J/XMTC48RMmIwNUknnQwHAHQicrwukzRQnwOCWYKJb+6pARVphAWtdCSjSKNSM6K8ZbrmGVNM+r3lX18uGiUrvNKyqiY3SCzpCHrlEN3aM6aiCCJugFvaI369l6tz6sz/lqwcpvjtACrK9fN0KeKw==</latexit> co
nt
in
u
u
m

<latexit sha1_base64="R7j2vQlYGnnMNQ9RP+l6cyAC3Yo=">AAACD3icbVBJTgJBFK3GCXFCXLqpSExckW7jtCS6cYmJDAl0SHXxgQrVQ6p+G0iHQ3gBt3oDd8atR/ACnsNq6IWAL/nJy3t/yvMiKTTa9reVW1vf2NzKbxd2dvf2D4qHpYYOY8WhzkMZqpbHNEgRQB0FSmhFCpjvSWh6o7vUbz6B0iIMHnESgeuzQSD6gjM0UrdY6iCMUfmJWSI01YDTbrFsV+wZ6CpxMlImGWrd4k+nF/LYhwC5ZFq3HTtCN2EKBZcwLXRiDRHjIzaAtqEB80G7yez3KT01So/2Q2UqQDpT/04kzNd64num02c41MteKv7ntWPs37iJCKIYIeDzQ/1YUgxpGgTtCQUc5cQQxpUwv1I+ZIpxNHEtXImGEy24ToNxlmNYJY3zinNVuXy4KFdvs4jy5JickDPikGtSJfekRuqEkzF5Ia/kzXq23q0P63PemrOymSOyAOvrF5YWncc=</latexit> b
as
is

se
t

<latexit sha1_base64="LS3ndrnZLWwjXwaiPGGqHV+8URA=">AAACE3icbVDLSsNAFL3xWeur6tLNYBFclUR8LYtuXFawD2hDmUwn7dCZSZiZCCHkJwRX+ifuxK0f4I+4dtpmYVsPXDiccy/33hPEnGnjut/Oyura+sZmaau8vbO7t185OGzpKFGENknEI9UJsKacSdo0zHDaiRXFIuC0HYzvJn77iSrNIvlo0pj6Ag8lCxnBxkqdXiAylfe9fqXq1twp0DLxClKFAo1+5ac3iEgiqDSEY627nhsbP8PKMMJpXu4lmsaYjPGQdi2VWFDtZ9N7c3RqlQEKI2VLGjRV/05kWGidisB2CmxGetGbiP953cSEN37GZJwYKslsUZhwZCI0eR4NmKLE8NQSTBSztyIywgoTYyOa2xKPUs2InnskC0Rug/IWY1kmrfOad1W7fLio1m+LyEpwDCdwBh5cQx3uoQFNIMDhGV7hzXlx3p0P53PWuuIUM0cwB+frF3Bpn4c=</latexit>r1
<latexit sha1_base64="LS3ndrnZLWwjXwaiPGGqHV+8URA=">AAACE3icbVDLSsNAFL3xWeur6tLNYBFclUR8LYtuXFawD2hDmUwn7dCZSZiZCCHkJwRX+ifuxK0f4I+4dtpmYVsPXDiccy/33hPEnGnjut/Oyura+sZmaau8vbO7t185OGzpKFGENknEI9UJsKacSdo0zHDaiRXFIuC0HYzvJn77iSrNIvlo0pj6Ag8lCxnBxkqdXiAylfe9fqXq1twp0DLxClKFAo1+5ac3iEgiqDSEY627nhsbP8PKMMJpXu4lmsaYjPGQdi2VWFDtZ9N7c3RqlQEKI2VLGjRV/05kWGidisB2CmxGetGbiP953cSEN37GZJwYKslsUZhwZCI0eR4NmKLE8NQSTBSztyIywgoTYyOa2xKPUs2InnskC0Rug/IWY1kmrfOad1W7fLio1m+LyEpwDCdwBh5cQx3uoQFNIMDhGV7hzXlx3p0P53PWuuIUM0cwB+frF3Bpn4c=</latexit>r1

<latexit sha1_base64="ImU5ZcTIwdsij+4gXtRkAZ6NVfI=">AAACE3icbVDLSgNBEOyNrxhfUY9eBoPgKewGX8egF48RzAOSJcxOJsmQmdllZlZYlv0JwZP+iTfx6gf4I56dJHswiQUNRVU33V1BxJk2rvvtFNbWNza3itulnd29/YPy4VFLh7EitElCHqpOgDXlTNKmYYbTTqQoFgGn7WByN/XbT1RpFspHk0TUF3gk2ZARbKzU6QUiVVm/1i9X3Ko7A1olXk4qkKPRL//0BiGJBZWGcKx113Mj46dYGUY4zUq9WNMIkwke0a6lEguq/XR2b4bOrDJAw1DZkgbN1L8TKRZaJyKwnQKbsV72puJ/Xjc2wxs/ZTKKDZVkvmgYc2RCNH0eDZiixPDEEkwUs7ciMsYKE2MjWtgSjRPNiF54JA1EZoPylmNZJa1a1buqXj5cVOq3eWRFOIFTOAcPrqEO99CAJhDg8Ayv8Oa8OO/Oh/M5by04+cwxLMD5+gVyEZ+I</latexit>r2 <latexit sha1_base64="A4Nz32EvYLEkXRTM3C1v6LJBtWY=">AAACE3icbVDLSgNBEOyNrxhfUY9eBoPgKez6Pga9eIxgHpAsYXYymwyZmV1mZoWw7E8InvRPvIlXP8Af8ewk2YNJLGgoqrrp7gpizrRx3W+nsLK6tr5R3Cxtbe/s7pX3D5o6ShShDRLxSLUDrClnkjYMM5y2Y0WxCDhtBaO7id96okqzSD6acUx9gQeShYxgY6V2NxCpynrnvXLFrbpToGXi5aQCOeq98k+3H5FEUGkIx1p3PDc2foqVYYTTrNRNNI0xGeEB7VgqsaDaT6f3ZujEKn0URsqWNGiq/p1IsdB6LALbKbAZ6kVvIv7ndRIT3vgpk3FiqCSzRWHCkYnQ5HnUZ4oSw8eWYKKYvRWRIVaYGBvR3JZ4ONaM6LlH0kBkNihvMZZl0jyrelfVy4eLSu02j6wIR3AMp+DBNdTgHurQAAIcnuEV3pwX5935cD5nrQUnnzmEOThfv3O5n4k=</latexit>r3<latexit sha1_base64="J5IAoNMirwTyxkfLo4FWFUv+zK8=">AAAB/nicbVDLSgNBEOyNrxhfUY9eBoPgKexKfByDXjxGMA9IljA7mU2GzMwuM7NCWBb8Bq969iZe/RWP/omTZA8msaChqOqmuyuIOdPGdb+dwtr6xuZWcbu0s7u3f1A+PGrpKFGENknEI9UJsKacSdo0zHDaiRXFIuC0HYzvpn77iSrNIvloJjH1BR5KFjKCjZU6vUCkKuvX+uWKW3VnQKvEy0kFcjT65Z/eICKJoNIQjrXuem5s/BQrwwinWamXaBpjMsZD2rVUYkG1n87uzdCZVQYojJQtadBM/TuRYqH1RAS2U2Az0sveVPzP6yYmvPFTJuPEUEnmi8KEIxOh6fNowBQlhk8swUQxeysiI6wwMTaihS2ByGwm3nICq6R1UfWuqpcPtUr9Nk+nCCdwCufgwTXU4R4a0AQCHF7gFd6cZ+fd+XA+560FJ585hgU4X7/YP5aS</latexit>r4

<latexit sha1_base64="ImU5ZcTIwdsij+4gXtRkAZ6NVfI=">AAACE3icbVDLSgNBEOyNrxhfUY9eBoPgKewGX8egF48RzAOSJcxOJsmQmdllZlZYlv0JwZP+iTfx6gf4I56dJHswiQUNRVU33V1BxJk2rvvtFNbWNza3itulnd29/YPy4VFLh7EitElCHqpOgDXlTNKmYYbTTqQoFgGn7WByN/XbT1RpFspHk0TUF3gk2ZARbKzU6QUiVVm/1i9X3Ko7A1olXk4qkKPRL//0BiGJBZWGcKx113Mj46dYGUY4zUq9WNMIkwke0a6lEguq/XR2b4bOrDJAw1DZkgbN1L8TKRZaJyKwnQKbsV72puJ/Xjc2wxs/ZTKKDZVkvmgYc2RCNH0eDZiixPDEEkwUs7ciMsYKE2MjWtgSjRPNiF54JA1EZoPylmNZJa1a1buqXj5cVOq3eWRFOIFTOAcPrqEO99CAJhDg8Ayv8Oa8OO/Oh/M5by04+cwxLMD5+gVyEZ+I</latexit>r2
<latexit sha1_base64="A4Nz32EvYLEkXRTM3C1v6LJBtWY=">AAACE3icbVDLSgNBEOyNrxhfUY9eBoPgKez6Pga9eIxgHpAsYXYymwyZmV1mZoWw7E8InvRPvIlXP8Af8ewk2YNJLGgoqrrp7gpizrRx3W+nsLK6tr5R3Cxtbe/s7pX3D5o6ShShDRLxSLUDrClnkjYMM5y2Y0WxCDhtBaO7id96okqzSD6acUx9gQeShYxgY6V2NxCpynrnvXLFrbpToGXi5aQCOeq98k+3H5FEUGkIx1p3PDc2foqVYYTTrNRNNI0xGeEB7VgqsaDaT6f3ZujEKn0URsqWNGiq/p1IsdB6LALbKbAZ6kVvIv7ndRIT3vgpk3FiqCSzRWHCkYnQ5HnUZ4oSw8eWYKKYvRWRIVaYGBvR3JZ4ONaM6LlH0kBkNihvMZZl0jyrelfVy4eLSu02j6wIR3AMp+DBNdTgHurQAAIcnuEV3pwX5935cD5nrQUnnzmEOThfv3O5n4k=</latexit>r3

<latexit sha1_base64="J5IAoNMirwTyxkfLo4FWFUv+zK8=">AAAB/nicbVDLSgNBEOyNrxhfUY9eBoPgKexKfByDXjxGMA9IljA7mU2GzMwuM7NCWBb8Bq969iZe/RWP/omTZA8msaChqOqmuyuIOdPGdb+dwtr6xuZWcbu0s7u3f1A+PGrpKFGENknEI9UJsKacSdo0zHDaiRXFIuC0HYzvpn77iSrNIvloJjH1BR5KFjKCjZU6vUCkKuvX+uWKW3VnQKvEy0kFcjT65Z/eICKJoNIQjrXuem5s/BQrwwinWamXaBpjMsZD2rVUYkG1n87uzdCZVQYojJQtadBM/TuRYqH1RAS2U2Az0sveVPzP6yYmvPFTJuPEUEnmi8KEIxOh6fNowBQlhk8swUQxeysiI6wwMTaihS2ByGwm3nICq6R1UfWuqpcPtUr9Nk+nCCdwCufgwTXU4R4a0AQCHF7gFd6cZ+fd+XA+560FJ585hgU4X7/YP5aS</latexit>r4

<latexit sha1_base64="5a3jtcUqnyUp6j2FJhbbgZl2/AM=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF49V7Ae0oWy2m3bpZhN2J0IJ/QdePCji1X/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilh960X664VXcOskq8nFQgR6Nf/uoNYpZGXCGT1Jiu5yboZ1SjYJJPS73U8ISyMR3yrqWKRtz42fzSKTmzyoCEsbalkMzV3xMZjYyZRIHtjCiOzLI3E//zuimG134mVJIiV2yxKEwlwZjM3iYDoTlDObGEMi3srYSNqKYMbTglG4K3/PIqaV1Uvctq7b5Wqd/kcRThBE7hHDy4gjrcQQOawCCEZ3iFN2fsvDjvzseiteDkM8fwB87nD6F6jXA=</latexit>

} <latexit sha1_base64="wvjSDNPAlw7MJ7zGQJQtM/ZNfRc=">AAACAXicbVDLSsNAFL2pr1pfVZduBovgqiTia1l047KCfUAbymQ6acdOJmFmUgyhK3/Arf6BO3Hrl/gDfoeTNgvbeuDC4Zx7ufceL+JMadv+tgorq2vrG8XN0tb2zu5eef+gqcJYEtogIQ9l28OKciZoQzPNaTuSFAcepy1vdJv5rTGVioXiQScRdQM8EMxnBGsjNbtjL32a9MoVu2pPgZaJk5MK5Kj3yj/dfkjigApNOFaq49iRdlMsNSOcTkrdWNEIkxEe0I6hAgdUuen02gk6MUof+aE0JTSaqn8nUhwolQSe6QywHqpFLxP/8zqx9q/dlIko1lSQ2SI/5kiHKHsd9ZmkRPPEEEwkM7ciMsQSE20CmtsSDRPFiMqCcRZjWCbNs6pzWb24P6/UbvKIinAEx3AKDlxBDe6gDg0g8Agv8Apv1rP1bn1Yn7PWgpXPHMIcrK9fdfOYTA==</latexit>x

<latexit sha1_base64="qenWTOViD2N2LPWadb7Ac5MSlRs=">AAAB/HicbVA9TwJBEJ3DL8Qv1NJmIzGxInfGr5JoY4mJHCRwIXvLHqzs7l1290zIBX+DrdZ2xtb/Yuk/cYErBHzJJC/vzWRmXphwpo3rfjuFldW19Y3iZmlre2d3r7x/4Os4VYQ2SMxj1QqxppxJ2jDMcNpKFMUi5LQZDm8nfvOJKs1i+WBGCQ0E7ksWMYKNlfxOMmBdr1uuuFV3CrRMvJxUIEe9W/7p9GKSCioN4VjrtucmJsiwMoxwOi51Uk0TTIa4T9uWSiyoDrLptWN0YpUeimJlSxo0Vf9OZFhoPRKh7RTYDPSiNxH/89qpia6DjMkkNVSS2aIo5cjEaPI66jFFieEjSzBRzN6KyAArTIwNaG5LKMY2E28xgWXin1W9y+rF/XmldpOnU4QjOIZT8OAKanAHdWgAgUd4gVd4c56dd+fD+Zy1Fpx85hDm4Hz9Av1tlYM=</latexit>

�1

<latexit sha1_base64="FcPmOC+aaGx5Xj9zO1jT+uafrMs=">AAAB/HicbVA9TwJBEJ3DL8Qv1NJmIzGxIndE1JJoY4mJfCRwIXvLHqzs7l1290zIBX+DrdZ2xtb/Yuk/cYErBHzJJC/vzWRmXhBzpo3rfju5tfWNza38dmFnd2//oHh41NRRoghtkIhHqh1gTTmTtGGY4bQdK4pFwGkrGN1O/dYTVZpF8sGMY+oLPJAsZAQbKzW78ZD1Kr1iyS27M6BV4mWkBBnqveJPtx+RRFBpCMdadzw3Nn6KlWGE00mhm2gaYzLCA9qxVGJBtZ/Orp2gM6v0URgpW9Kgmfp3IsVC67EIbKfAZqiXvan4n9dJTHjtp0zGiaGSzBeFCUcmQtPXUZ8pSgwfW4KJYvZWRIZYYWJsQAtbAjGxmXjLCaySZqXsXZar9xel2k2WTh5O4BTOwYMrqMEd1KEBBB7hBV7hzXl23p0P53PemnOymWNYgPP1C/8AlYQ=</latexit>

�2

<latexit sha1_base64="3Cz2tZas8Ik7CBnIvAtpp6isI5E=">AAACDXicbVDLSsNAFJ3UV62vqLhyM1gEVyURX8uiG1dSwT6gCWEynbZDZ5IwcyOWkG/wG9zq2p249Rtc+icmbRa29cCFwzn3ci7HjwTXYFnfRmlpeWV1rbxe2djc2t4xd/daOowVZU0ailB1fKKZ4AFrAgfBOpFiRPqCtf3RTe63H5nSPAweYBwxV5JBwPucEsgkzzxwoiH3kjvPAfYESiah8tPUM6tWzZoALxK7IFVUoOGZP04vpLFkAVBBtO7aVgRuQhRwKlhacWLNIkJHZMC6GQ2IZNpNJu+n+DhTergfqmwCwBP170VCpNZj6WebksBQz3u5+J/XjaF/5SY8iGJgAZ0G9WOBIcR5F7jHFaMgxhkhVPHsV0yHRBEKWWMzKb7MO7HnG1gkrdOafVE7vz+r1q+LdsroEB2hE2SjS1RHt6iBmoiiBL2gV/RmPBvvxofxOV0tGcXNPpqB8fULeS2c+Q==</latexit>

�Norb
<latexit sha1_base64="XnyRqy+LO5P3ORCTR0yMnOK8Rt4=">AAAB/HicbVDLSgNBEJz1GeMr6tHLYBA8hV3xdQx68RjBPCBZwuzsbDJmZmeZ6Q2EJX6DVz17E6/+i0f/xEmyB5NY0FBUddPdFSSCG3Ddb2dldW19Y7OwVdze2d3bLx0cNoxKNWV1qoTSrYAYJnjM6sBBsFaiGZGBYM1gcDfxm0OmDVfxI4wS5kvSi3nEKQErNTrDUIHplspuxZ0CLxMvJ2WUo9Yt/XRCRVPJYqCCGNP23AT8jGjgVLBxsZMalhA6ID3WtjQmkhk/m147xqdWCXGktK0Y8FT9O5ERacxIBrZTEuibRW8i/ue1U4hu/IzHSQosprNFUSowKDx5HYdcMwpiZAmhmttbMe0TTSjYgOa2BHJsM/EWE1gmjfOKd1W5fLgoV2/zdAroGJ2gM+Sha1RF96iG6oiiJ/SCXtGb8+y8Ox/O56x1xclnjtAcnK9fkzaV4g==</latexit>...

<latexit sha1_base64="3yvozTtEdUUe0XGlYs1q9wpsz24=">AAAB93icbVDLSgNBEOyNrxhfUY9eFoPgKeyKr2PQi8cEzAOSJcxOepMhM7PLzKywhHyBVz17E69+jkf/xEmyBxMtaCiquunuChPOtPG8L6ewtr6xuVXcLu3s7u0flA+PWjpOFcUmjXmsOiHRyJnEpmGGYydRSETIsR2O72d++wmVZrF8NFmCgSBDySJGibFSw++XK17Vm8P9S/ycVCBHvV/+7g1imgqUhnKiddf3EhNMiDKMcpyWeqnGhNAxGWLXUkkE6mAyP3Tqnlll4EaxsiWNO1d/T0yI0DoToe0UxIz0qjcT//O6qYlugwmTSWpQ0sWiKOWuid3Z1+6AKaSGZ5YQqpi91aUjogg1NpulLaGY2kz81QT+ktZF1b+uXjUuK7W7PJ0inMApnIMPN1CDB6hDEyggPMMLvDqZ8+a8Ox+L1oKTzxzDEpzPHx7Ek1U=</latexit>

1

<latexit sha1_base64="f5b6C3B5EuBjHUF26U8CB/xwhyE=">AAAB93icbVDLSgNBEOyNrxhfUY9eFoPgKeyKr2PQi8cEzAOSJcxOepMhM7PLzKywhHyBVz17E69+jkf/xEmyBxMtaCiquunuChPOtPG8L6ewtr6xuVXcLu3s7u0flA+PWjpOFcUmjXmsOiHRyJnEpmGGYydRSETIsR2O72d++wmVZrF8NFmCgSBDySJGibFSw+uXK17Vm8P9S/ycVCBHvV/+7g1imgqUhnKiddf3EhNMiDKMcpyWeqnGhNAxGWLXUkkE6mAyP3Tqnlll4EaxsiWNO1d/T0yI0DoToe0UxIz0qjcT//O6qYlugwmTSWpQ0sWiKOWuid3Z1+6AKaSGZ5YQqpi91aUjogg1NpulLaGY2kz81QT+ktZF1b+uXjUuK7W7PJ0inMApnIMPN1CDB6hDEyggPMMLvDqZ8+a8Ox+L1oKTzxzDEpzPHx0xk1Q=</latexit>

0

<latexit sha1_base64="3yvozTtEdUUe0XGlYs1q9wpsz24=">AAAB93icbVDLSgNBEOyNrxhfUY9eFoPgKeyKr2PQi8cEzAOSJcxOepMhM7PLzKywhHyBVz17E69+jkf/xEmyBxMtaCiquunuChPOtPG8L6ewtr6xuVXcLu3s7u0flA+PWjpOFcUmjXmsOiHRyJnEpmGGYydRSETIsR2O72d++wmVZrF8NFmCgSBDySJGibFSw++XK17Vm8P9S/ycVCBHvV/+7g1imgqUhnKiddf3EhNMiDKMcpyWeqnGhNAxGWLXUkkE6mAyP3Tqnlll4EaxsiWNO1d/T0yI0DoToe0UxIz0qjcT//O6qYlugwmTSWpQ0sWiKOWuid3Z1+6AKaSGZ5YQqpi91aUjogg1NpulLaGY2kz81QT+ktZF1b+uXjUuK7W7PJ0inMApnIMPN1CDB6hDEyggPMMLvDqZ8+a8Ox+L1oKTzxzDEpzPHx7Ek1U=</latexit>

1
<latexit sha1_base64="XnyRqy+LO5P3ORCTR0yMnOK8Rt4=">AAAB/HicbVDLSgNBEJz1GeMr6tHLYBA8hV3xdQx68RjBPCBZwuzsbDJmZmeZ6Q2EJX6DVz17E6/+i0f/xEmyB5NY0FBUddPdFSSCG3Ddb2dldW19Y7OwVdze2d3bLx0cNoxKNWV1qoTSrYAYJnjM6sBBsFaiGZGBYM1gcDfxm0OmDVfxI4wS5kvSi3nEKQErNTrDUIHplspuxZ0CLxMvJ2WUo9Yt/XRCRVPJYqCCGNP23AT8jGjgVLBxsZMalhA6ID3WtjQmkhk/m147xqdWCXGktK0Y8FT9O5ERacxIBrZTEuibRW8i/ue1U4hu/IzHSQosprNFUSowKDx5HYdcMwpiZAmhmttbMe0TTSjYgOa2BHJsM/EWE1gmjfOKd1W5fLgoV2/zdAroGJ2gM+Sha1RF96iG6oiiJ/SCXtGb8+y8Ox/O56x1xclnjtAcnK9fkzaV4g==</latexit>...

<latexit sha1_base64="5a3jtcUqnyUp6j2FJhbbgZl2/AM=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF49V7Ae0oWy2m3bpZhN2J0IJ/QdePCji1X/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilh960X664VXcOskq8nFQgR6Nf/uoNYpZGXCGT1Jiu5yboZ1SjYJJPS73U8ISyMR3yrqWKRtz42fzSKTmzyoCEsbalkMzV3xMZjYyZRIHtjCiOzLI3E//zuimG134mVJIiV2yxKEwlwZjM3iYDoTlDObGEMi3srYSNqKYMbTglG4K3/PIqaV1Uvctq7b5Wqd/kcRThBE7hHDy4gjrcQQOawCCEZ3iFN2fsvDjvzseiteDkM8fwB87nD6F6jXA=</latexit>

} <latexit sha1_base64="wvjSDNPAlw7MJ7zGQJQtM/ZNfRc=">AAACAXicbVDLSsNAFL2pr1pfVZduBovgqiTia1l047KCfUAbymQ6acdOJmFmUgyhK3/Arf6BO3Hrl/gDfoeTNgvbeuDC4Zx7ufceL+JMadv+tgorq2vrG8XN0tb2zu5eef+gqcJYEtogIQ9l28OKciZoQzPNaTuSFAcepy1vdJv5rTGVioXiQScRdQM8EMxnBGsjNbtjL32a9MoVu2pPgZaJk5MK5Kj3yj/dfkjigApNOFaq49iRdlMsNSOcTkrdWNEIkxEe0I6hAgdUuen02gk6MUof+aE0JTSaqn8nUhwolQSe6QywHqpFLxP/8zqx9q/dlIko1lSQ2SI/5kiHKHsd9ZmkRPPEEEwkM7ciMsQSE20CmtsSDRPFiMqCcRZjWCbNs6pzWb24P6/UbvKIinAEx3AKDlxBDe6gDg0g8Agv8Apv1rP1bn1Yn7PWgpXPHMIcrK9fdfOYTA==</latexit>x
<latexit sha1_base64="3yvozTtEdUUe0XGlYs1q9wpsz24=">AAAB93icbVDLSgNBEOyNrxhfUY9eFoPgKeyKr2PQi8cEzAOSJcxOepMhM7PLzKywhHyBVz17E69+jkf/xEmyBxMtaCiquunuChPOtPG8L6ewtr6xuVXcLu3s7u0flA+PWjpOFcUmjXmsOiHRyJnEpmGGYydRSETIsR2O72d++wmVZrF8NFmCgSBDySJGibFSw++XK17Vm8P9S/ycVCBHvV/+7g1imgqUhnKiddf3EhNMiDKMcpyWeqnGhNAxGWLXUkkE6mAyP3Tqnlll4EaxsiWNO1d/T0yI0DoToe0UxIz0qjcT//O6qYlugwmTSWpQ0sWiKOWuid3Z1+6AKaSGZ5YQqpi91aUjogg1NpulLaGY2kz81QT+ktZF1b+uXjUuK7W7PJ0inMApnIMPN1CDB6hDEyggPMMLvDqZ8+a8Ox+L1oKTzxzDEpzPHx7Ek1U=</latexit>

1

<latexit sha1_base64="f5b6C3B5EuBjHUF26U8CB/xwhyE=">AAAB93icbVDLSgNBEOyNrxhfUY9eFoPgKeyKr2PQi8cEzAOSJcxOepMhM7PLzKywhHyBVz17E69+jkf/xEmyBxMtaCiquunuChPOtPG8L6ewtr6xuVXcLu3s7u0flA+PWjpOFcUmjXmsOiHRyJnEpmGGYydRSETIsR2O72d++wmVZrF8NFmCgSBDySJGibFSw+uXK17Vm8P9S/ycVCBHvV/+7g1imgqUhnKiddf3EhNMiDKMcpyWeqnGhNAxGWLXUkkE6mAyP3Tqnlll4EaxsiWNO1d/T0yI0DoToe0UxIz0qjcT//O6qYlugwmTSWpQ0sWiKOWuid3Z1+6AKaSGZ5YQqpi91aUjogg1NpulLaGY2kz81QT+ktZF1b+uXjUuK7W7PJ0inMApnIMPN1CDB6hDEyggPMMLvDqZ8+a8Ox+L1oKTzxzDEpzPHx0xk1Q=</latexit>

0

<latexit sha1_base64="3yvozTtEdUUe0XGlYs1q9wpsz24=">AAAB93icbVDLSgNBEOyNrxhfUY9eFoPgKeyKr2PQi8cEzAOSJcxOepMhM7PLzKywhHyBVz17E69+jkf/xEmyBxMtaCiquunuChPOtPG8L6ewtr6xuVXcLu3s7u0flA+PWjpOFcUmjXmsOiHRyJnEpmGGYydRSETIsR2O72d++wmVZrF8NFmCgSBDySJGibFSw++XK17Vm8P9S/ycVCBHvV/+7g1imgqUhnKiddf3EhNMiDKMcpyWeqnGhNAxGWLXUkkE6mAyP3Tqnlll4EaxsiWNO1d/T0yI0DoToe0UxIz0qjcT//O6qYlugwmTSWpQ0sWiKOWuid3Z1+6AKaSGZ5YQqpi91aUjogg1NpulLaGY2kz81QT+ktZF1b+uXjUuK7W7PJ0inMApnIMPN1CDB6hDEyggPMMLvDqZ8+a8Ox+L1oKTzxzDEpzPHx7Ek1U=</latexit>

1
<latexit sha1_base64="XnyRqy+LO5P3ORCTR0yMnOK8Rt4=">AAAB/HicbVDLSgNBEJz1GeMr6tHLYBA8hV3xdQx68RjBPCBZwuzsbDJmZmeZ6Q2EJX6DVz17E6/+i0f/xEmyB5NY0FBUddPdFSSCG3Ddb2dldW19Y7OwVdze2d3bLx0cNoxKNWV1qoTSrYAYJnjM6sBBsFaiGZGBYM1gcDfxm0OmDVfxI4wS5kvSi3nEKQErNTrDUIHplspuxZ0CLxMvJ2WUo9Yt/XRCRVPJYqCCGNP23AT8jGjgVLBxsZMalhA6ID3WtjQmkhk/m147xqdWCXGktK0Y8FT9O5ERacxIBrZTEuibRW8i/ue1U4hu/IzHSQosprNFUSowKDx5HYdcMwpiZAmhmttbMe0TTSjYgOa2BHJsM/EWE1gmjfOKd1W5fLgoV2/zdAroGJ2gM+Sha1RF96iG6oiiJ/SCXtGb8+y8Ox/O56x1xclnjtAcnK9fkzaV4g==</latexit>...

<latexit sha1_base64="03vvTSRWIdyvDP0zitUx9egkOHM=">AAACGXicbVC7SgNBFJ31/TZqaTMaBKuwK77KqCCWCsYISQizkxszZGZ2mbkbDEtqP8JvsNXaTmytLP0TZ+MWxnhg4HDOvZw7J4ylsOj7n97E5NT0zOzc/MLi0vLKamFt/cZGieFQ4ZGMzG3ILEihoYICJdzGBpgKJVTD7lnmV3tgrIj0NfZjaCh2p0VbcIZOaha26gj3aFRaZT2g54nmmU5PlAvHpAV20CwU/ZI/BB0nQU6KJMdls/BVb0U8UaCRS2ZtLfBjbKTMoOASBgv1xELMeJfdQc1RzRTYRjr8yoDuOKVF25FxTyMdqr83Uqas7avQTSqGHfvXy8T/vFqC7eNGKnScIGj+E9ROJMWIZr3QljDAUfYdYdwIdyvlHWYYR9feSEqosk6Cvw2Mk5u9UnBYOrjaL5ZP83bmyCbZJrskIEekTC7IJakQTh7IE3kmL96j9+q9ee8/oxNevrNBRuB9fAN6oKG+</latexit>

Wave Function Amplitudes

<latexit sha1_base64="rVV8tSBhJ54ZeRw4p3UQlOjPao0="></latexit>

| ✓i =
X

x

 ✓(x)|xi

<latexit sha1_base64="Y2y1+6YlnaAPW9PKJLDuas75a2U=">AAACJXicbVBNS8NAEN34WetX1IvgZbEInkoifh2LXjxWtB/QlrLZTtulu0nYnYgl1F8jeNJ/4k0ET/4Lz6ZpDrb1wcDjvRlm5nmhFAYd58taWFxaXlnNreXXNza3tu2d3aoJIs2hwgMZ6LrHDEjhQwUFSqiHGpjyJNS8wfXYrz2ANiLw73EYQkuxni+6gjNMpLa930R4RK3isg46EQd6x1QowYzadsEpOinoPHEzUiAZym37p9kJeKTARy6ZMQ3XCbEVM42CSxjlm5GBkPEB60EjoT5TYFpx+sGIHiVKh3YDnZSPNFX/TsRMGTNUXtKpGPbNrDcW//MaEXYvW7HwwwjB55NF3UhSDOg4DtoRGjjKYUIY1yK5lfI+04xjEtrUFk9N/RCH/aERPA3KnY1lnlRPiu558ez2tFC6yiLLkQNySI6JSy5IidyQMqkQTp7IM3klb9aL9W59WJ+T1gUrm9kjU7C+fwGRZaby</latexit>

Produce Samples

<latexit sha1_base64="NB/ONuVQBbfCG+To2qs5UEc6x/M=">AAACMHicbVDLSgNBEJz1Gd9Rj14Gg+Ap7IqvY1AED4IRjApJkN5JJxmc2V1meoNhyQf4NYIn/RM9iVc/wLOTmIOJNgwUVdXd0xUmSlry/TdvYnJqemY2Nze/sLi0vJJfXbuycWoEVkSsYnMTgkUlI6yQJIU3iUHQocLr8O64r1930FgZR5fUTbCuoRXJphRAjrrNF2qE92R0dtIBlQIhP4sFKH4eWjQdcGNsz7n8oj8o/hcEQ1Bgwyrf5r9qjVikGiMSCqytBn5C9QwMSaGwN19LLSYg7qCFVQcj0Gjr2eCYHt9yTIM3Y+NeRHzA/u7IQFvb1aFzaqC2Hdf65H9aNaXmYT2TUZISRuJnUTNVnGLeT4Y3pEFBqusACCPdX7logwFBLr+RLaEeuSFL2l0rxSCoYDyWv+BqpxjsF/cudgulo2FkObbBNtk2C9gBK7FTVmYVJtgDe2TP7MV78l69d+/jxzrhDXvW2Uh5n99nmatz</latexit>

Evaluate Local Observables
<latexit sha1_base64="wtsNiW8bcipAjbgTqawrsemALp8=">AAACY3icbVBNa9tAFFwrbeI6beo4uYXCEhNIL0YKzcclENpLDj3EUDsBy4jV+ilevPpg98nELPpn+SO9FnpKzz13JesQ2x1YGGbm8fZNmEmh0XV/NpytN2+3d5rvWrvvP+x9bO93hjrNFYcBT2WqHkKmQYoEBihQwkOmgMWhhPtw9q307+egtEiTH7jIYByzx0REgjO0UtAe9oPv9NSfh+ap+EyvqR8pxo0fKmaWYkH71J8BGj/TggY+TgFZUVSRSl6m1uyg3XV7bgW6SbyadEmNu6D915+kPI8hQS6Z1iPPzXBsmELBJRQtP9eQMT5jjzCyNGEx6LGp7i/oiVUmNEqVfQnSSn09YVis9SIObTJmONXrXin+zxvlGF2NjUiyHCHhy0VRLimmtCyTToQCjnJhCeNK2L9SPmW2QbSVr2wJ45UbTDZdaMF1WZS3XssmGZ71vIveef9L9+ZrXVmTHJFjcko8ckluyC25IwPCyTP5RV7In8ZvZ9fpOIfLqNOoZw7ICpxP/wBLCb0K</latexit>

QL(x) =
hx|Q | ✓i
hx| ✓i

<latexit sha1_base64="oxReOR7JNLTfJ4MyeNGfve2c2h0="></latexit>

hQi ⇡ Ex⇠| ✓|2 [QL(x)]

<latexit sha1_base64="0/f+c1lTZ8DNk4ElqDcWdKOveE8=">AAACEHicbVDLSsNAFL2pr1pfVZduBovgqiTia1l047KCaQttKJPppB06MwkzEyGEfoPgSv/Enbj1D/wR107bLGz1wIXDOfdy7z1hwpk2rvvllFZW19Y3ypuVre2d3b3q/kFLx6ki1Ccxj1UnxJpyJqlvmOG0kyiKRchpOxzfTv32I1WaxfLBZAkNBB5KFjGCjZX8Yb8n0n615tbdGdBf4hWkBgWa/ep3bxCTVFBpCMdadz03MUGOlWGE00mll2qaYDLGQ9q1VGJBdZDPjp2gE6sMUBQrW9Kgmfp7IsdC60yEtlNgM9LL3lT8z+umJroOciaT1FBJ5ouilCMTo+nnaMAUJYZnlmCimL0VkRFWmBibz8KWUCz8kCejTDOiJzYobzmWv6R1Vvcu6xf357XGTRFZGY7gGE7BgytowB00wQcCDJ7gBV6dZ+fNeXc+5q0lp5g5hAU4nz8W3Z5I</latexit>

gµ
<latexit sha1_base64="EtANkxxDavsh+4fC4/xGVLhG350=">AAACFnicbVDLSsNAFJ3UV62vqks3g0VwVRLxtSy6cVnRPiAJZTKdtkPnEWYmQgj9DMGV/ok7cevWH3HtpM3Cth64cDjnXu69J4oZ1cZ1v53Syura+kZ5s7K1vbO7V90/aGuZKExaWDKpuhHShFFBWoYaRrqxIohHjHSi8W3ud56I0lSKR5PGJORoKOiAYmSs5D/0soAnMBDJpFetuXV3CrhMvILUQIFmr/oT9CVOOBEGM6S177mxCTOkDMWMTCpBokmM8BgNiW+pQJzoMJuePIEnVunDgVS2hIFT9e9EhrjWKY9sJ0dmpBe9XPzP8xMzuA4zKuLEEIFniwYJg0bC/H/Yp4pgw1JLEFbU3grxCCmEjU1pbkvE537I4lGqKdZ5UN5iLMukfVb3LusX9+e1xk0RWRkcgWNwCjxwBRrgDjRBC2AgwTN4BW/Oi/PufDifs9aSU8wcgjk4X7/FXqDH</latexit>

Sµ⌫

<latexit sha1_base64="v4CcIGlzcmfBt5OH9H14kkwZwII=">AAACO3icbVDLSgNBEJyN73fUo5fBIHgKu+LrKHrxqGA0kITQO+kkQ2Z2h5leMSz5C79G8KQ/4dmbeNWzk5iDUQsGiqpuarpio6SjMHwJClPTM7Nz8wuLS8srq2vF9Y1rl2ZWYEWkKrXVGBwqmWCFJCmsGougY4U3ce9s6N/conUyTa6ob7ChoZPIthRAXmoWy3XCO7I6r5gWEPJbsHJkgeIGLGgkv80HvE5dJGgWS2E5HIH/JdGYlNgYF83iZ72VikxjQkKBc7UoNNTIwZIUCgeL9cyhAdGDDtY8TXyga+SjuwZ8xyst3k6tfwnxkfpzIwftXF/HflIDdd1vbyj+59Uyah83cpmYjDAR30HtTHFK+bAk3pIWBam+JyCs9H/louvbEMMyJlJiPXFDbrp9J4Ub+KKi37X8Jdd75eiwfHC5Xzo5HVc2z7bYNttlETtiJ+ycXbAKE+yePbAn9hw8Bq/BW/D+PVoIxjubbALBxxfQPLAq</latexit>

U
p
d
ate

variation
al

p
aram

eters
✓

<latexit sha1_base64="c8ImzDUyRdj90fy/dK6uSQd1mVw=">AAACKXicbVDJSgNBEO1xjXGLetRDYxA8hRlxOwY96DESs0ASQk+nkjTp7hm6a8Qw5OLXCJ70T7ypV//Bs5PlYBIfFDzeq6Kqnh9KYdF1P52FxaXlldXUWnp9Y3NrO7OzW7ZBZDiUeCADU/WZBSk0lFCghGpogClfQsXvXQ/9ygMYKwJ9j/0QGop1tGgLzjCRmpmDOsIjGhXfmCDSLVpEhkCLwAzvDpqZrJtzR6DzxJuQLJmg0Mz81FsBjxRo5JJZW/PcEBsxMyi4hEG6HlkIGe+xDtQSqpkC24hHXwzoUaK0aDswSWmkI/XvRMyUtX3lJ52KYdfOekPxP68WYfuyEQsdRgiajxe1I0kxoMNIaEsY4Cj7CWHciORWyrvMMI5JcFNbfDX1Qxx2+1ZwOwzKm41lnpRPct557uzuNJu/mkSWIvvkkBwTj1yQPLklBVIinDyRZ/JK3pwX5935cL7GrQvOZGaPTMH5/gVd06hZ</latexit>

Ground State Search

<latexit sha1_base64="OuANiKN8xZ9bbI/uZnR6Vmge6qc=">AAACJHicbVDLSgNBEJyNrxhfqx48eBkMgqewK76OQRE8RsgLkhBmJ51kyMzuMtMbDEu+RvCkf+JNPHjxMzy7m+RgEgsaiqpuuru8UAqDjvNlZVZW19Y3spu5re2d3T17/6BqgkhzqPBABrruMQNS+FBBgRLqoQamPAk1b3CX+rUhaCMCv4yjEFqK9XzRFZxhIrXtoybCE2oVl4UCej8MZJQa47addwrOBHSZuDOSJzOU2vZPsxPwSIGPXDJjGq4TYitmGgWXMM41IwMh4wPWg0ZCfabAtOLJA2N6migd2g10Uj7Sifp3ImbKmJHykk7FsG8WvVT8z2tE2L1pxcIPIwSfTxd1I0kxoGkatCM0cJSjhDCuRXIr5X2mGccks7ktnpr7IQ77IyO4SYNyF2NZJtXzgntVuHy8yBdvZ5FlyTE5IWfEJdekSB5IiVQIJ2PyTF7Jm/VivVsf1ue0NWPNZg7JHKzvX9hgppU=</latexit>

Time Evolution

<latexit sha1_base64="3+oGIDlb5ta+NRirB0oI92LEbAY=">AAACMHicbVDLTgIxFO3gC/GFunTTSExckRnja0lk4xKiPBIgpFMKNLSdSXtrJBM+wK8xcaV/oivj1g9wbXksBDxJk5Nzzs3tPWEsuAHf//BSK6tr6xvpzczW9s7uXnb/oGoiqymr0EhEuh4SwwRXrAIcBKvHmhEZClYLB8WxX3tg2vBI3cMwZi1Jeop3OSXgpHY21wT2CFomZUsUWImLXFPLAd9xacUkNHIpP+9PgJdJMCM5NEOpnf1pdiJqJVNABTGmEfgxtBKigVPBRpmmNSwmdEB6rOGoIpKZVjI5ZoRPnNLB3Ui7pwBP1L8TCZHGDGXokpJA3yx6Y/E/r2Ghe91KuIotMEWni7pWYIjwuBnc4ZpREENHCNXc/RXTPtGEgutvbkso525I4v7QcGrGRQWLtSyT6lk+uMxflM9zhZtZZWl0hI7RKQrQFSqgW1RCFUTRE3pGr+jNe/HevU/vaxpNebOZQzQH7/sX5JervA==</latexit>

Quantum Circuit Simulation

<latexit sha1_base64="G2uPFy7JOAB5c6QNiUh80P05br4=">AAACMnicbVDLSgMxFM34rPU16tJNsAiuyoz4WhbduGzVWqEtJZPe2mCSGZIbsQz9Ar9GcKVfojtx69q1M7ULqx4IHM45l5t7okQKi0Hw4k1Nz8zOzRcWiotLyyur/tr6pY2d4VDnsYzNVcQsSKGhjgIlXCUGmIokNKKbk9xv3IKxItYXOEigrdi1Fj3BGWZSx99uIdyhUWnNMY1O0XNkCPQMeKwtGsfz2LDjl4JyMAL9S8IxKZExqh3/s9WNuVOgkUtmbTMMEmynzKDgEobFlrOQMH7DrqGZUc0U2HY6OmdItzOlS3uxyZ5GOlJ/TqRMWTtQUZZUDPv2t5eL/3lNh72jdip04hA0/17Uc5JiTPNuaFcY4CgHGWHciOyvlPeZYRyzBie2RGrihjTpD6zgNi8q/F3LX3K5Ww4Pyvu1vVLleFxZgWySLbJDQnJIKuSUVEmdcHJPHsgTefYevVfvzXv/jk5545kNMgHv4wvRSay7</latexit>

Quantum State Reconstruction

<latexit sha1_base64="VOpZhIypTnpLogvPDRZQRw6BuQg=">AAACHHicbVDLSsNAFJ3UV62PRl26CRbBVUnE17LoxmUF+4AmhMl00g6dJMPMjRBCv0RwpX/iTtwK/ohrJ20WtvXAhcM593LvPYHgTIFtfxuVtfWNza3qdm1nd2+/bh4cdlWSSkI7JOGJ7AdYUc5i2gEGnPaFpDgKOO0Fk7vC7z1RqVgSP0ImqBfhUcxCRjBoyTfrrlDMz10YU8C+PfXNht20Z7BWiVOSBirR9s0fd5iQNKIxEI6VGji2AC/HEhjhdFpzU0UFJhM8ogNNYxxR5eWzw6fWqVaGVphIXTFYM/XvRI4jpbIo0J0RhrFa9grxP2+QQnjj5SwWKdCYzBeFKbcgsYoUrCGTlADPNMFEMn2rRcZYYgI6q4UtQbTwQy7GmWJEFUE5y7Gsku5507lqXj5cNFq3ZWRVdIxO0Bly0DVqoXvURh1EUIqe0St6M16Md+PD+Jy3Voxy5ggtwPj6Bcbgotk=</latexit>

 ✓0

<latexit sha1_base64="H78IjlNQp0MTOBKZNANfS6rx9Yk=">AAACHHicbVDLSsNAFJ3UV62PRl26CRbBVUnE17LoxmUF+4AmhMl00g6dJMPMjRBCv0RwpX/iTtwK/ohrJ20WtvXAhcM593LvPYHgTIFtfxuVtfWNza3qdm1nd2+/bh4cdlWSSkI7JOGJ7AdYUc5i2gEGnPaFpDgKOO0Fk7vC7z1RqVgSP0ImqBfhUcxCRjBoyTfrrlDMz10YU8C+M/XNht20Z7BWiVOSBirR9s0fd5iQNKIxEI6VGji2AC/HEhjhdFpzU0UFJhM8ogNNYxxR5eWzw6fWqVaGVphIXTFYM/XvRI4jpbIo0J0RhrFa9grxP2+QQnjj5SwWKdCYzBeFKbcgsYoUrCGTlADPNMFEMn2rRcZYYgI6q4UtQbTwQy7GmWJEFUE5y7Gsku5507lqXj5cNFq3ZWRVdIxO0Bly0DVqoXvURh1EUIqe0St6M16Md+PD+Jy3Voxy5ggtwPj6BciJoto=</latexit>

 ✓1

<latexit sha1_base64="nuqrIVL3GpEyuqbGdLMGRIq9blk=">AAACHHicbVDLSsNAFJ34rPXRqEs3g0VwVZLia1l047KCfUATwmQ6aYZOkmHmRgihXyK40j9xJ24Ff8S1aZuFbT1w4XDOvdx7jy8F12BZ38ba+sbm1nZlp7q7t39QMw+PujpJFWUdmohE9X2imeAx6wAHwfpSMRL5gvX88d3U7z0xpXkSP0ImmRuRUcwDTgkUkmfWHKm5lzsQMiBec+KZdathzYBXiV2SOirR9swfZ5jQNGIxUEG0HtiWBDcnCjgVbFJ1Us0koWMyYoOCxiRi2s1nh0/wWaEMcZCoomLAM/XvRE4irbPILzojAqFe9qbif94gheDGzXksU2AxnS8KUoEhwdMU8JArRkFkBSFU8eJWTEOiCIUiq4UtfrTwQy7DTHOqp0HZy7Gskm6zYV81Lh8u6q3bMrIKOkGn6BzZ6Bq10D1qow6iKEXP6BW9GS/Gu/FhfM5b14xy5hgtwPj6Bcoyots=</latexit>

 ✓2

<latexit sha1_base64="eqxMyrf0YyrNNv+BuOEF8ma9YWY=">AAACHHicbVDLSsNAFJ3UV62PRl26CRbBVUl8L4tuXFawD2hCmEwnzdDJZJi5EUrolwiu9E/ciVvBH3Ft0mZhqwcuHM65l3vvCSRnGmz7y6isrK6tb1Q3a1vbO7t1c2+/q5NUEdohCU9UP8CaciZoBxhw2peK4jjgtBeMbwu/90iVZol4gImkXoxHgoWMYMgl36y7UjM/cyGigP2zqW827KY9g/WXOCVpoBJt3/x2hwlJYyqAcKz1wLEleBlWwAin05qbaioxGeMRHeRU4JhqL5sdPrWOc2VohYnKS4A1U39PZDjWehIHeWeMIdLLXiH+5w1SCK+9jAmZAhVkvihMuQWJVaRgDZmiBPgkJ5golt9qkQgrTCDPamFLEC/8kMloohnRRVDOcix/Sfe06Vw2L+7PG62bMrIqOkRH6AQ56Aq10B1qow4iKEVP6AW9Gs/Gm/FufMxbK0Y5c4AWYHz+AMvbotw=</latexit>

 ✓3

<latexit sha1_base64="wvjSDNPAlw7MJ7zGQJQtM/ZNfRc=">AAACAXicbVDLSsNAFL2pr1pfVZduBovgqiTia1l047KCfUAbymQ6acdOJmFmUgyhK3/Arf6BO3Hrl/gDfoeTNgvbeuDC4Zx7ufceL+JMadv+tgorq2vrG8XN0tb2zu5eef+gqcJYEtogIQ9l28OKciZoQzPNaTuSFAcepy1vdJv5rTGVioXiQScRdQM8EMxnBGsjNbtjL32a9MoVu2pPgZaJk5MK5Kj3yj/dfkjigApNOFaq49iRdlMsNSOcTkrdWNEIkxEe0I6hAgdUuen02gk6MUof+aE0JTSaqn8nUhwolQSe6QywHqpFLxP/8zqx9q/dlIko1lSQ2SI/5kiHKHsd9ZmkRPPEEEwkM7ciMsQSE20CmtsSDRPFiMqCcRZjWCbNs6pzWb24P6/UbvKIinAEx3AKDlxBDe6gDg0g8Agv8Apv1rP1bn1Yn7PWgpXPHMIcrK9fdfOYTA==</latexit>x

<latexit sha1_base64="cpU3OaAMXdsb89JGLsicO9pbtWY=">AAACFHicbVDLSgMxFM3UV62vqks3wSLUzZDRsXVZdOOygn1IW0omTdvQZGZIMsVhmK8QXOmfuBO37v0R16YPxFoPXDiccy/33uOFnCmN0KeVWVldW9/Ibua2tnd29/L7B3UVRJLQGgl4IJseVpQzn9Y005w2Q0mx8DhteKPrid8YU6lY4N/pOKQdgQc+6zOCtZHuq8X22Ese0tNuvoBst+S6yIHILrsInTvQsdEUP6QA5qh281/tXkAiQX1NOFaq5aBQdxIsNSOcprl2pGiIyQgPaMtQHwuqOsn04BSeGKUH+4E05Ws4VX9PJFgoFQvPdAqsh+qvNxH/81qR7l92EuaHkaY+mS3qRxzqAE6+hz0mKdE8NgQTycytkAyxxESbjBa2eGLhhyQcxooRlZqglmJZJvUz2ynZF7duoXI1jywLjsAxKAIHlEEF3IAqqAECBHgEz+DFerJerTfrfdaaseYzh2AB1sc3/+Cf1A==</latexit> P
(x
) <latexit sha1_base64="5V+7duxzC6HTc75jns53dCGo9zA="></latexit>

| 
✓ (x

)| 2

<latexit sha1_base64="JIh5HXw8xEYoglPpPwexTye0KLU=">AAACDHicbVDLSgNBEJyNrxhfUY9eBoPgKeyKr2PQi8cEzAOSJcxOZpMhM7PLTK+wLPkCwZP+iTfx6j/4I56dJHswiQUNRVU33V1BLLgB1/12CmvrG5tbxe3Szu7e/kH58KhlokRT1qSRiHQnIIYJrlgTOAjWiTUjMhCsHYzvp377iWnDI/UIacx8SYaKh5wSsFID+uWKW3VnwKvEy0kF5aj3yz+9QUQTyRRQQYzpem4MfkY0cCrYpNRLDIsJHZMh61qqiGTGz2aHTvCZVQY4jLQtBXim/p3IiDQmlYHtlARGZtmbiv953QTCWz/jKk6AKTpfFCYCQ4SnX+MB14yCSC0hVHN7K6YjogkFm83ClkAu/JDFo9RwaiY2KG85llXSuqh619WrxmWldpdHVkQn6BSdIw/doBp6QHXURBQx9Ixe0Zvz4rw7H87nvLXg5DPHaAHO1y/oF5yQ</latexit>

t

<latexit sha1_base64="hcGtNjtGnJwxvkdLI2OCpKdkau8=">AAACHnicbZDLSsNAFIYn9VbrLdWlm8EiuCqJeFsW3bhswV6gCWUynbRDZyZhZqKE0EcRXOmbuBO3+iKunaZZ2NYfBj7+cw7nzB/EjCrtON9WaW19Y3OrvF3Z2d3bP7Crhx0VJRKTNo5YJHsBUoRRQdqaakZ6sSSIB4x0g8ndrN59JFLRSDzoNCY+RyNBQ4qRNtbArnoMiREjsAU9mdPArjl1JxdcBbeAGijUHNg/3jDCCSdCY4aU6rtOrP0MSU0xI9OKlygSIzxBI9I3KBAnys/y06fw1DhDGEbSPKFh7v6dyBBXKuWB6eRIj9VybWb+V+snOrzxMyriRBOB54vChEEdwVkOcEglwZqlBhCW1NwK8RhJhLVJa2FLwBf+kMXjVFGspiYodzmWVeic192r+mXrota4LSIrg2NwAs6AC65BA9yDJmgDDJ7AM3gFb9aL9W59WJ/z1pJVzByBBVlfv2+VoyI=</latexit> hQ
i

<latexit sha1_base64="i3fX+wyZqIxqmX4lR5pXAA/cBr4=">AAACHnicbZDLSsNAFIYn9VbrLdWlm8EiuCqJeFsW3XRZwV6gCWUynbRDZyZhZqKE0EcRXOmbuBO3+iKunaZZ2NYfBj7+cw7nzB/EjCrtON9WaW19Y3OrvF3Z2d3bP7Crhx0VJRKTNo5YJHsBUoRRQdqaakZ6sSSIB4x0g8ndrN59JFLRSDzoNCY+RyNBQ4qRNtbArnoMiREjsAk9mdPArjl1JxdcBbeAGijUGtg/3jDCCSdCY4aU6rtOrP0MSU0xI9OKlygSIzxBI9I3KBAnys/y06fw1DhDGEbSPKFh7v6dyBBXKuWB6eRIj9VybWb+V+snOrzxMyriRBOB54vChEEdwVkOcEglwZqlBhCW1NwK8RhJhLVJa2FLwBf+kMXjVFGspiYodzmWVeic192r+uX9Ra1xW0RWBsfgBJwBF1yDBmiCFmgDDJ7AM3gFb9aL9W59WJ/z1pJVzByBBVlfv2Bloxk=</latexit> hH
i

<latexit sha1_base64="+rJ6Ul8kysco4kpJkKp+LKt8u6A=">AAACH3icbVBNS8NAEN3Ur1q/aj16CRbBU0nEr2PRi94q2A9oQ9lsp+3S3STsTqQl9K8InvSfeBOv/SOe3bQ52OqDgcd7M8zM8yPBNTrOzMqtrW9sbuW3Czu7e/sHxcNSQ4exYlBnoQhVy6caBA+gjhwFtCIFVPoCmv7oLvWbz6A0D4MnnETgSToIeJ8zikbqFksdhDEqmTwgqLk27RbLTsWZw/5L3IyUSYZat/jd6YUslhAgE1TrtutE6CVUIWcCpoVOrCGibEQH0DY0oBK0l8xvn9qnRunZ/VCZCtCeq78nEiq1nkjfdEqKQ73qpeJ/XjvG/o2X8CCKEQK2WNSPhY2hnQZh97gChmJiCGWKm1ttNqSKMhPE8hZfLv2QRMOJ5kynQbmrsfwljfOKe1W5fLwoV2+zyPLkmJyQM+KSa1Il96RG6oSRMXkhb+TderU+rE/ra9Gas7KZI7IEa/YDCPGkng==</latexit>

Iteration

FIG. 1. Neural Quantum States for many-body simulations. Different systems can be tackled by this technique, including
quantum systems of interacting spins of qubits, fermionic lattice systems and interacting electrons in molecules, amongst
others. The wave function amplitudes are given by the output of a neural network that takes as the input the corresponding
basis element label x. Monte Carlo sampling is used to evaluate spectating values, overlaps and gradients, which are used to
optimize the parameters of the neural networks. Different types of many body simulations can be realized, including the search
of ground-state wave functions, the simulation of the time evolution of quantum states, the simulation of quantum circuits or
quantum state reconstruction.

approximates a target many-body state as closely as pos-
sible. The variational state | ✓i is defined by its ampli-
tudes, which are functions of the basis element labels x

 ✓ : x ! C. (2)

We require that the function  ✓ can be evaluated at
a polynomial cost in the number of degrees of freedom
of the problem (number of spins, qubits, single-particle
basis elements, particle number etc.). This requirement
is the root of the approximate nature of the approach.
The most general variational state  ✓ is that represented
by the lookup table of wave-function amplitudes for each
basis state. However, due to the exponential or combina-
torial growth of the Hilbert space dimension, this lookup
table requires the storage of exponentially or combina-
torially many amplitudes, making it not efficiently com-
putable.

A neural quantum state is a variational wave func-
tion for which  ✓ is partially or completely defined by
a neural network whose weights and biases are part of
the variational parameters ✓. A neural network de-

fines a parametrized model family, whose functional
form relies on the sequential composition of layers of
parametrized transformations [41]. They also satisfy a
universal approximation theorem [4–6], that states that
for a sufficiently-large number of parameters, a neural
network can approximate any target function to any spec-
ified accuracy.

B. Estimation of expectation values: the local
observable trick

The characterization of the physical properties of the
many-body system (like the energy, susceptibilities...), as
well as the parameter search for  ✓ requires the efficient
computation of expectation values of the form:

hQi
 ✓

=
h ✓|Q | ✓i
h ✓| ✓i

. (3)

where Q is a generic many-body operator. The di-
rect calculation of the numerator and denominator of

<latexit sha1_base64="E+ktY1AQldCHkbH3JEDUHRNJiN0="></latexit>

 (r1, · · · , rN ) = NN(r1, · · · , rN )

Neural representations of quantum states

Carrasquilla & Melko, Nature Physics, 2017Spin systems: exact for toric code with MLP
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Variational optimization

12

6

FIG. 2. A schematic representation of optimization dynam-
ics within the variational manifold M . Optimization trajec-
tories flow towards lower energy states on the landscape E(✓)
under imaginary time evolution operator e�⌧H . In the case
of real-time evolution e�iHt, energy is conserved and trajec-
tories are constrained to level-sets defined by the initial state
| (t = 0)i.

respect to the trial state itself at imaginary time ⌧ . Di-
agonal operators Oµ are defined by @✓µ | ✓i = Oµ | ✓i
or

Oµ =
X

x

@ ln ✓
@✓µ

(x) |xihx| . (17)

A more detailed derivation of Eq. 16 starting from Eq. 15
can be found in Appendix A.

It must be noted that the above expression is only well
defined if  ✓(x) 6= 0. Through the Monte Carlo estima-
tion of S and g, one implicitly assumes that the support
of the amplitudes and their gradients is the same. If this
is not the case, the expression in Eq. 16 for S and g may
contain a bias term [14]. We note that g = r✓E(✓) is
precisely the gradient that could have been obtained by
direct differentiation of Eq. 12. The matrix S is com-
monly called the quantum geometric tensor (QGT) or
quantum Fisher information matrix [56–58] and acts like
the metric tensor of the parameter manifold M induced
by the distance in the surrounding Hilbert space H be-
tween un-normalized states defined in Eq. 1. In other
words, it can be shown that the following expansion of
the quantum fidelity F (·, ·) holds:

F ( ✓+�✓, ✓) =
|h ✓+�✓| ✓i|2

h ✓+�✓| ✓+�✓i h ✓| ✓i
=

= 1� 1

2

X

µ⌫

Sµ⌫ �✓
µ
�✓
⌫ + · · · .

(18)

The geometrical picture of this optimization procedure
then becomes clearer – imaginary time evolution induces

a set of trajectories on the Hilbert space H connecting
different initial states to to the ground state |0i. Because
we are limited to variational states | ✓i, we project the
true trajectory onto the variational manifold M . The
states on the projected path

�� ✓(⌧)
↵

are parametrized by
the solution to S ✓̇ = �g. The choice of how to discretize
progress along this projection with sequential parameter
updates is left to individual users. A schematic repre-
sentation of such imaginary time dynamics is given in
Fig. 2.

In addition, the S matrix can be treated in several
different approximations:

• If no approximations are made and a simple Eu-
ler integrator is used to discretize the the top level
ODE S ✓̇ = �g, one recovers the quantum natu-

ral gradient (QNG) or the stochastic reconfigura-

tion (SR) update rule [56, 57]:

✓
0 = ✓ � �⌧ S

�1
g (19)

We note that more sophisticated integrators can be
used as well, usually chosen from the Runge-Kutta
(RK) family [59, 60].

• If S is instead approximated in block-diagonal
form, the Kronecker-factored approximate curva-

ture (KFAC) [61] optimization scheme is recovered.
Usually, Sµ⌫ is assumed to vanish if µ and ⌫ belong
to different layers of the neural network state  ✓
but other choices are possible.

• If we approximate S ⇡ in Eq. 19, we obtain
stochastic gradient descent (SGD):

✓
0 = ✓ � ⌘ r✓E(✓) , (20)

upon substituting gµ = @µE(✓). We identify �⌧

with the learning rate ⌘.

• Finally, if we keep S = , we can use any of the
popular optimizers from the deep learning litera-
ture such as Adam or Adamax [62], RMSProp [63]
and others [41].

This hierarchy of increasingly complex optimizers is
well-motivated by differential geometry on the manifold
M . Quantum natural gradient can be thought of as
steepest descent optimization in curved space with metric
tensor S, guaranteeing that the state described by the
updated parameters is close in Fubini-Study metric to the
initial state. For more insights into geometry on quantum
variational manifolds, we refer the interested reader to an
excellent review in Ref. [64].

While producing fast convergence and reliable results,
the QNG/SR algorithm is sometimes avoided in practice
due to the computational overhead for NQS with many
parameters. The overhead is coming from the need to
solve an P ⇥P linear system at each step, where P is the
number of parameters. Recently, a group of authors in
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FIG. 2. A schematic representation of optimization dynam-
ics within the variational manifold M . Optimization trajec-
tories flow towards lower energy states on the landscape E(✓)
under imaginary time evolution operator e�⌧H . In the case
of real-time evolution e�iHt, energy is conserved and trajec-
tories are constrained to level-sets defined by the initial state
| (t = 0)i.

respect to the trial state itself at imaginary time ⌧ . Di-
agonal operators Oµ are defined by @✓µ | ✓i = Oµ | ✓i
or

Oµ =
X

x

@ ln ✓
@✓µ

(x) |xihx| . (17)

A more detailed derivation of Eq. 16 starting from Eq. 15
can be found in Appendix A.

It must be noted that the above expression is only well
defined if  ✓(x) 6= 0. Through the Monte Carlo estima-
tion of S and g, one implicitly assumes that the support
of the amplitudes and their gradients is the same. If this
is not the case, the expression in Eq. 16 for S and g may
contain a bias term [14]. We note that g = r✓E(✓) is
precisely the gradient that could have been obtained by
direct differentiation of Eq. 12. The matrix S is com-
monly called the quantum geometric tensor (QGT) or
quantum Fisher information matrix [56–58] and acts like
the metric tensor of the parameter manifold M induced
by the distance in the surrounding Hilbert space H be-
tween un-normalized states defined in Eq. 1. In other
words, it can be shown that the following expansion of
the quantum fidelity F (·, ·) holds:

F ( ✓+�✓, ✓) =
|h ✓+�✓| ✓i|2

h ✓+�✓| ✓+�✓i h ✓| ✓i
=

= 1� 1

2

X

µ⌫

Sµ⌫ �✓
µ
�✓
⌫ + · · · .

(18)

The geometrical picture of this optimization procedure
then becomes clearer – imaginary time evolution induces

a set of trajectories on the Hilbert space H connecting
different initial states to to the ground state |0i. Because
we are limited to variational states | ✓i, we project the
true trajectory onto the variational manifold M . The
states on the projected path

�� ✓(⌧)
↵

are parametrized by
the solution to S ✓̇ = �g. The choice of how to discretize
progress along this projection with sequential parameter
updates is left to individual users. A schematic repre-
sentation of such imaginary time dynamics is given in
Fig. 2.

In addition, the S matrix can be treated in several
different approximations:

• If no approximations are made and a simple Eu-
ler integrator is used to discretize the the top level
ODE S ✓̇ = �g, one recovers the quantum natu-

ral gradient (QNG) or the stochastic reconfigura-

tion (SR) update rule [56, 57]:

✓
0 = ✓ � �⌧ S

�1
g (19)

We note that more sophisticated integrators can be
used as well, usually chosen from the Runge-Kutta
(RK) family [59, 60].

• If S is instead approximated in block-diagonal
form, the Kronecker-factored approximate curva-

ture (KFAC) [61] optimization scheme is recovered.
Usually, Sµ⌫ is assumed to vanish if µ and ⌫ belong
to different layers of the neural network state  ✓
but other choices are possible.

• If we approximate S ⇡ in Eq. 19, we obtain
stochastic gradient descent (SGD):

✓
0 = ✓ � ⌘ r✓E(✓) , (20)

upon substituting gµ = @µE(✓). We identify �⌧

with the learning rate ⌘.

• Finally, if we keep S = , we can use any of the
popular optimizers from the deep learning litera-
ture such as Adam or Adamax [62], RMSProp [63]
and others [41].

This hierarchy of increasingly complex optimizers is
well-motivated by differential geometry on the manifold
M . Quantum natural gradient can be thought of as
steepest descent optimization in curved space with metric
tensor S, guaranteeing that the state described by the
updated parameters is close in Fubini-Study metric to the
initial state. For more insights into geometry on quantum
variational manifolds, we refer the interested reader to an
excellent review in Ref. [64].

While producing fast convergence and reliable results,
the QNG/SR algorithm is sometimes avoided in practice
due to the computational overhead for NQS with many
parameters. The overhead is coming from the need to
solve an P ⇥P linear system at each step, where P is the
number of parameters. Recently, a group of authors in

Fig: Medvidović & Moreno, arXiv:2402.11014 (2024)
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+ Natural gradients = “Stochastic Reconfiguration”

New alternative with better convergence: K.Neklyudov, J.Nys, M.Welling, et al., “Wasserstein quantum Monte Carlo”, NeurIPS (2023).




How to “train” neural representations?
Initial parameters θ0 (MC)MC sampling

Ψθt x ∼ |Ψθt
|2

Expectation value

Gradient descent: update θt → θt+1
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Monte Carlo estimators of energy and gradient
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Neural representations of quantum states

Theory: representational power 
Volume law entanglement with neural representations (Deng et al., PRX, 2017)

Exact representation of various nonlocal states (Glasser, et al., PRX 2018) 

Empirical: benchmarked performance 
Neural networks are less affected by: 


frustration, 

quantum statistics, 

high entanglement, and 

large correlation lengths 


(D.Wu, et al, Science (2024))
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TABLE I. Ground-state energy on the 10⇥10 square lattice at J2/J1 = 0.5.

Energy per site Wave function # parameters Marshall prior Reference Year

-0.48941(1) NNQS 893994 Not available [32] 2023

-0.494757(12) CNN Not available No [22] 2020

-0.4947359(1) Shallow CNN 11009 Not available [21] 2018

-0.49516(1) Deep CNN 7676 Yes [20] 2019

-0.495502(1) PEPS + Deep CNN 3531 No [33] 2021

-0.495530 DMRG 8192 SU(2) states No [31] 2014

-0.495627(6) aCNN 6538 Yes [34] 2023

-0.49575(3) RBM-fermionic 2000 Yes [15] 2019

-0.49586(4) CNN 10952 Yes [35] 2023

-0.4968(4) RBM (p = 1) Not available Yes [36] 2022
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functions. MinSR does not require inverting the origi-
nal P ⇥ P matrix but instead a much smaller M ⇥ M
one, where M is the number of configurations used to
estimate the SR matrix. This is convenient in the deep
learning setup where P � M . Most importantly, this
procedure avoids allocating the P ⇥ P matrix, reducing
the memory cost to P ⇥ M . However, this formulation
is obtained as a minimization of the Fubini-Study dis-
tance with an ad hoc constraint. In this work, we first
use a simple relation from linear algebra to show, in a
trasparent way, that SR can be rewritten exactly in a
form which involves inverting a small M⇥M matrix and
that only a standard regularization of the SR matrix is
required. Then, we exploit our technique to optimize a
Deep Vision Transformer (Deep ViT) model, which has
demonstrated exceptional accuracy in describing quan-
tum spin systems in one and two spatial dimensions [38–
41]. Using almost 3⇥ 105 variational parameters, we are
able to achieve state-of-the-art ground-state energy on
the most paradigmatic example of quantum many-body
spin model, the J1-J2 Heisenberg model on square lattice:
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ator at site i and J1 and J2 are nearest- and next-
nearest-neighbour antiferromagnetic couplings, respec-
tively. Its ground-state properties have been the sub-
ject of many studies over the years, often with conflicting
results [13, 31, 37]. Still, in the field of quantum many-
body systems, this is widely recognized as the benchmark
model for validating new approaches. Here, we will focus
on the particularly challenging case with J2/J1 = 0.5 on
the 10⇥ 10 cluster, where there are no exact solutions.

Within variational methods, one of the main di�culties
comes from the fact that the sign structure of the the
ground state is not known for J2/J1 > 0. Indeed, the
Marshall sign rule [42] gives the correct signs (on each
cluster) only when J2 = 0, while it largely fails close to
J2/J1 = 0.5. In this respect, it is important to mention
that some of the previous attempts to define variational
wave functions included the Marshall sign rule as a first
approximation of the correct sign structure, thus taking
advantage of a prior probability (Marshall prior). By
contrast, within the present approach, we do not need
to use any prior knowledge of the sign structure, thus
defining a very general and flexible variational Ansatz.
In the following, we first show the alternative SR for-

mulation, then discuss Deep Transformer architecture,
recently introduced by some of us [38, 39] as a varia-
tional state, and finally present our results obtained by
combining the two techniques on the J1-J2 Heisenberg
model.
Stochastic Reconfiguration. Finding the ground state

of a quantum system with the variational principle
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where Ŝi = (Sx
i , S

y
i , S

z
i ) is the S = 1/2 spin oper-

ator at site i and J1 and J2 are nearest- and next-
nearest-neighbour antiferromagnetic couplings, respec-
tively. Its ground-state properties have been the sub-
ject of many studies over the years, often with conflicting
results [13, 31, 37]. Still, in the field of quantum many-
body systems, this is widely recognized as the benchmark
model for validating new approaches. Here, we will focus
on the particularly challenging case with J2/J1 = 0.5 on
the 10⇥ 10 cluster, where there are no exact solutions.

Within variational methods, one of the main di�culties
comes from the fact that the sign structure of the the
ground state is not known for J2/J1 > 0. Indeed, the
Marshall sign rule [42] gives the correct signs (on each
cluster) only when J2 = 0, while it largely fails close to
J2/J1 = 0.5. In this respect, it is important to mention
that some of the previous attempts to define variational
wave functions included the Marshall sign rule as a first
approximation of the correct sign structure, thus taking
advantage of a prior probability (Marshall prior). By
contrast, within the present approach, we do not need
to use any prior knowledge of the sign structure, thus
defining a very general and flexible variational Ansatz.
In the following, we first show the alternative SR for-

mulation, then discuss Deep Transformer architecture,
recently introduced by some of us [38, 39] as a varia-
tional state, and finally present our results obtained by
combining the two techniques on the J1-J2 Heisenberg
model.
Stochastic Reconfiguration. Finding the ground state

of a quantum system with the variational principle
involves minimizing the variational energy E(✓) =
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where Ŝi = (Sx
i , S

y
i , S

z
i ) is the S = 1/2 spin oper-

ator at site i and J1 and J2 are nearest- and next-
nearest-neighbour antiferromagnetic couplings, respec-
tively. Its ground-state properties have been the sub-
ject of many studies over the years, often with conflicting
results [13, 31, 37]. Still, in the field of quantum many-
body systems, this is widely recognized as the benchmark
model for validating new approaches. Here, we will focus
on the particularly challenging case with J2/J1 = 0.5 on
the 10⇥ 10 cluster, where there are no exact solutions.

Within variational methods, one of the main di�culties
comes from the fact that the sign structure of the the
ground state is not known for J2/J1 > 0. Indeed, the
Marshall sign rule [42] gives the correct signs (on each
cluster) only when J2 = 0, while it largely fails close to
J2/J1 = 0.5. In this respect, it is important to mention
that some of the previous attempts to define variational
wave functions included the Marshall sign rule as a first
approximation of the correct sign structure, thus taking
advantage of a prior probability (Marshall prior). By
contrast, within the present approach, we do not need
to use any prior knowledge of the sign structure, thus
defining a very general and flexible variational Ansatz.
In the following, we first show the alternative SR for-

mulation, then discuss Deep Transformer architecture,
recently introduced by some of us [38, 39] as a varia-
tional state, and finally present our results obtained by
combining the two techniques on the J1-J2 Heisenberg
model.
Stochastic Reconfiguration. Finding the ground state

of a quantum system with the variational principle
involves minimizing the variational energy E(✓) =
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The Transformer architecture has become the state-of-art model for natural language processing
tasks and, more recently, also for computer vision tasks, thus defining the Vision Transformer (ViT)
architecture. The key feature is the ability to describe long-range correlations among the elements of
the input sequences, through the so-called self-attention mechanism. Here, we propose an adaptation
of the ViT architecture with complex parameters to define a new class of variational neural-network
states for quantum many-body systems, the ViT wave function. We apply this idea to the one-
dimensional J1-J2 Heisenberg model, demonstrating that a relatively simple parametrization gets
excellent results for both gapped and gapless phases. In this case, excellent accuracies are obtained
by a relatively shallow architecture, with a single layer of self-attention, thus largely simplifying the
original architecture. Still, the optimization of a deeper structure is possible and can be used for
more challenging models, most notably highly-frustrated systems in two dimensions. The success
of the ViT wave function relies on mixing both local and global operations, thus enabling the study
of large systems with high accuracy.

Introduction. Variational approaches for studying
quantum many-body systems have proved fundamen-
tal for understanding the properties of extremely com-
plicated physical systems, famous examples being the
Bardeen-Cooper-Schrie↵er state [1] and Laughlin [2]
wave functions to explain superconductivity and frac-
tional quantum Hall e↵ect, respectively. Given the
exponential growth of the many-body Hilbert space,
a compact representation of the ground state, encod-
ing the correct physical properties, is a highly non-
trivial task for strongly-interacting systems. Recently,
a class of wave functions, based on neural networks,
has been introduced and developed [3, 4]. Start-
ing from Restricted Boltzmann Machines (RBMs) [3],
which are the simplest neural-network Ansatz (namely
only one fully-connected hidden layer), numerous stud-
ies have been carried out testing di↵erent types of
architectures; examples include Convolutional-Neural
Networks (CNNs) [5–8], Recurrent-Neural Networks
(RNNs) [9, 10], Autoregressive-Neural Networks [11, 12],
but also combinations of neural networks with standard
variational wave functions (e.g., Gutzwiller-projected
fermionic ones) [13, 14].

In the last few years, the Transformer architecture [15]
has become the state-of-art choice in natural-language
processing tasks. Its key feature is the ability to model
relationships among all elements of an input sequence
(regardless of their positions), by e�ciently transforming
input sequences into abstract representations. Inspired
by successes in natural-language processing, very small
modifications led to the so-called Vision Transformer
(ViT) [16], which has been applied to image classifica-
tion tasks, achieving competitive results with respect to
state-of-art deep CNNs, while being much more e�cient

⇤ These authors contributed equally.

than them. Within many-body problems, Transformer
networks have recently been employed in the context of
lattice gauge theories [11], to perform quantum tomogra-
phy in presence of noise [17], and for real- and imaginary-
time evolutions of quantum systems [18].
In this Letter, we demonstrate that the ViT archi-

tecture can be adapted to define a new class of neural-
network quantum states, here dubbed as ViT wave func-
tions. We apply our Ansatz to the one-dimensional J1-J2
Heisenberg model, whose Hamiltonian is defined by

Ĥ = J1
X

R

ŜR · ŜR+1 + J2
X

R

ŜR · ŜR+2 (1)

where ŜR = (Sx
R, S

y
R, S

z
R) is the S = 1/2 spin oper-

ator at site R and J1 > 0 and J2 � 0 are nearest-
and next-nearest-neighbor antiferromagnetic couplings,
respectively. Its phase diagram is well established by an-
alytical and numerical studies [19]. For small values of
J2/J1, the ground state has power-law spin-spin corre-
lations and the excitation spectrum is gapless; for large
values of J2/J1, the ground state is two-fold degenerate,
leading to long-range dimer order (but exponentially de-
caying spin-spin correlations), and the spectrum is fully
gapped. These two phases are separated by a critical
point at (J2/J1)c = 0.241167 ± 0.000005 [20, 21]. In-
terestingly, for J2/J1 > 0.5, incommensurate (but short-
range) spin-spin correlations have been found, whereas
dimer–dimer correlations are always commensurate. In
the following, we assess the ground-state properties of the
J1-J2 model on finite clusters, imposing periodic bound-
ary conditions.
From the numerical perspective, density-matrix renor-

malization group (DMRG) [22] or its modern variations
based upon tensor networks Ansätze [23] represent one of
the few approaches that can accurately assess the ground-
state properties of frustrated systems in one dimension,
as the J1-J2 model of Eq. (1). In fact, the main limita-
tion to the use of quantum Monte Carlo techniques [24]

ar
X

iv
:2

21
1.

05
50

4v
2 

 [
co

nd
-m

at
.d

is
-n

n]
  1

1 
Ju

n 
20

23



Overview
Fermionic neural network representations


Applications 

Phase diagram of homogeneous electron gas


Electron dynamics: electrons out of equilibrium 


Future prospects

17



Fermionic neural networks?
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Backflow as coordinate transformations

• Imaginary time evolution:


• Representative X’ for each X


• Backflow transformation Y(X):

2

in turn, opens up the possibility to use the Stochastic
Reconfiguration (SR) optimization technique [31], which
lowers the number of optimization steps needed to reach
convergence by about two orders of magnitude, while
reaching similar or better accuracy.

II. METHODS

A. Exact Wave Functions and Mean-Value Point

Finding the ground state wave function of a strongly
interacting Hamiltonian is generally a complex task that
only admits analytical solutions in special cases. How-
ever, we argue in the following that the exact ground-
state wave function obeys a general functional structure.
We consider an arbitrary non-relativistic Hamiltonian of
identical particles of mass m in d spatial dimensions:

H = �
~2
2m

NX

i

r
2
ri + V (X), (1)

where the potential and interaction energy V is assumed
to be diagonal in position representation, defined by the
particle coordinates X = (r1, ..., rN ) (with ri 2 Rd). We
also introduce a suitable reference state |�0i, taken as
an initial condition for the imaginary-time (⌧) evolution
induced by the Hamiltonian:

�⌧ (X) = hX|e
�⌧H

|�0i (2)

It is well known that the exact ground-state wave
function is obtained in the limit of large imaginary
times: lim⌧!1 �⌧ (X) /  0(X), provided that the initial
state |�0i is non-orthogonal to the exact ground state,
|h 0|�0i| > 0. The non-orthogonality condition, in the
fermionic case, also implies that the wave function must
be antisymmetric �0(Pij(X)) = ��0(X) under the ex-
change of any two particles i $ j, as performed by the
operator Pij . To make progress on the explicit functional
form of Eq. (2), we write
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is the matrix element of the imaginary-time propagator.
In the second line above, we have used the mean-value
theorem for integrals, which states that under relatively
mild smoothness conditions, the value of the integral is
proportional to the value of the integrand computed at a
point belonging to the integration domain. We call this
special point Y(X) = (y1(X), ...,yN (X)), since the value

of the integral depends parametrically on the coordinates
X.
In the general case of a non-relativistic Hamiltonian,

Eq. (1), it can be shown that G⌧ (X,X0) � 0 for all values
ofX,X0. Moreover, the propagator is invariant under the
exchange of particle coordinates: G⌧ (Pij(X),Pij(X0)) =
G⌧ (X,X0). For fermionic wave functions, this invariance
implies that Y(X) must be equivariant under particle
exchange, Y(Pij(X)) = Pij(Y(X)), such that the re-
sulting total wave function remains antisymmetric. The
functional form found is then the product of a permu-
tationally symmetric and positive semi-definite function
J(X) = G⌧ (X,Y(X)) ⇥ Vol(⌦) and the reference state
computed at modified coordinates Y(X):

�⌧ (X) = J(X)⇥ �0(Y(X)). (5)

The many-body coordinate transformation entering the
amplitudes of the initial state coincides with the mean-
value point of the integrand in our derivation and is
an alternative justification for the backflow transforma-
tion [37] of single-particle coordinates.
In the simple case in which the initial state is a Slater

determinant of given spin orbitals �µ(ri), one has that
�0(X) = det{�µ(ri)}/

p
N !. The functional form, re-

sulting from Eq. (5), is then structurally related to the
heuristic Jastrow-Backflow variational form [38, 39]. We
can also remark that the permutation-invariant contribu-
tion can be absorbed inside the determinant such that

�⌧ (X) = K ⇥ det{'µ(yi(X))}, (6)
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malization constant. In principle, the functional form
above is exact, provided that the symmetric factor J(X)
and the mean-value coordinates Y(X) are chosen to sat-
isfy Eq. (4), and the reference state is not orthogonal to
the true ground state. An approximate but explicit form
for the coordinate transformation Y(X) can be obtained
by repeatedly applying the imaginary-time propagator to
the reference state in the limit of small ⌧ . This process
gives rise to the concept of an iterative backflow trans-
formation, as introduced in Ref. [40].

B. Message-Passing Neural Quantum State

Motivated by the functional form of Eq. (6), we
construct our variational Ansatz by combining simple
single-particle orbitals, {�µ}

N

µ=1, with highly correlated
many-body backflow coordinates, Y(X). The back-
flow transformation is parameterized using highly flexi-
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related to the iterative backflow approach [40, 41].
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in turn, opens up the possibility to use the Stochastic
Reconfiguration (SR) optimization technique [31], which
lowers the number of optimization steps needed to reach
convergence by about two orders of magnitude, while
reaching similar or better accuracy.

II. METHODS
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Finding the ground state wave function of a strongly
interacting Hamiltonian is generally a complex task that
only admits analytical solutions in special cases. How-
ever, we argue in the following that the exact ground-
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We consider an arbitrary non-relativistic Hamiltonian of
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induced by the Hamiltonian:
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fermionic case, also implies that the wave function must
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In the second line above, we have used the mean-value
theorem for integrals, which states that under relatively
mild smoothness conditions, the value of the integral is
proportional to the value of the integrand computed at a
point belonging to the integration domain. We call this
special point Y(X) = (y1(X), ...,yN (X)), since the value

of the integral depends parametrically on the coordinates
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exchange, Y(Pij(X)) = Pij(Y(X)), such that the re-
sulting total wave function remains antisymmetric. The
functional form found is then the product of a permu-
tationally symmetric and positive semi-definite function
J(X) = G⌧ (X,Y(X)) ⇥ Vol(⌦) and the reference state
computed at modified coordinates Y(X):

�⌧ (X) = J(X)⇥ �0(Y(X)). (5)

The many-body coordinate transformation entering the
amplitudes of the initial state coincides with the mean-
value point of the integrand in our derivation and is
an alternative justification for the backflow transforma-
tion [37] of single-particle coordinates.
In the simple case in which the initial state is a Slater
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convergence by about two orders of magnitude, while
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point belonging to the integration domain. We call this
special point Y(X) = (y1(X), ...,yN (X)), since the value
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value point of the integrand in our derivation and is
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above is exact, provided that the symmetric factor J(X)
and the mean-value coordinates Y(X) are chosen to sat-
isfy Eq. (4), and the reference state is not orthogonal to
the true ground state. An approximate but explicit form
for the coordinate transformation Y(X) can be obtained
by repeatedly applying the imaginary-time propagator to
the reference state in the limit of small ⌧ . This process
gives rise to the concept of an iterative backflow trans-
formation, as introduced in Ref. [40].
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Motivated by the functional form of Eq. (6), we
construct our variational Ansatz by combining simple
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µ=1, with highly correlated
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lowers the number of optimization steps needed to reach
convergence by about two orders of magnitude, while
reaching similar or better accuracy.
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only admits analytical solutions in special cases. How-
ever, we argue in the following that the exact ground-
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to be diagonal in position representation, defined by the
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also introduce a suitable reference state |�0i, taken as
an initial condition for the imaginary-time (⌧) evolution
induced by the Hamiltonian:
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function is obtained in the limit of large imaginary
times: lim⌧!1 �⌧ (X) /  0(X), provided that the initial
state |�0i is non-orthogonal to the exact ground state,
|h 0|�0i| > 0. The non-orthogonality condition, in the
fermionic case, also implies that the wave function must
be antisymmetric �0(Pij(X)) = ��0(X) under the ex-
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is the matrix element of the imaginary-time propagator.
In the second line above, we have used the mean-value
theorem for integrals, which states that under relatively
mild smoothness conditions, the value of the integral is
proportional to the value of the integrand computed at a
point belonging to the integration domain. We call this
special point Y(X) = (y1(X), ...,yN (X)), since the value

of the integral depends parametrically on the coordinates
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Eq. (1), it can be shown that G⌧ (X,X0) � 0 for all values
ofX,X0. Moreover, the propagator is invariant under the
exchange of particle coordinates: G⌧ (Pij(X),Pij(X0)) =
G⌧ (X,X0). For fermionic wave functions, this invariance
implies that Y(X) must be equivariant under particle
exchange, Y(Pij(X)) = Pij(Y(X)), such that the re-
sulting total wave function remains antisymmetric. The
functional form found is then the product of a permu-
tationally symmetric and positive semi-definite function
J(X) = G⌧ (X,Y(X)) ⇥ Vol(⌦) and the reference state
computed at modified coordinates Y(X):

�⌧ (X) = J(X)⇥ �0(Y(X)). (5)

The many-body coordinate transformation entering the
amplitudes of the initial state coincides with the mean-
value point of the integrand in our derivation and is
an alternative justification for the backflow transforma-
tion [37] of single-particle coordinates.
In the simple case in which the initial state is a Slater

determinant of given spin orbitals �µ(ri), one has that
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malization constant. In principle, the functional form
above is exact, provided that the symmetric factor J(X)
and the mean-value coordinates Y(X) are chosen to sat-
isfy Eq. (4), and the reference state is not orthogonal to
the true ground state. An approximate but explicit form
for the coordinate transformation Y(X) can be obtained
by repeatedly applying the imaginary-time propagator to
the reference state in the limit of small ⌧ . This process
gives rise to the concept of an iterative backflow trans-
formation, as introduced in Ref. [40].

B. Message-Passing Neural Quantum State

Motivated by the functional form of Eq. (6), we
construct our variational Ansatz by combining simple
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µ=1, with highly correlated
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Reconfiguration (SR) optimization technique [31], which
lowers the number of optimization steps needed to reach
convergence by about two orders of magnitude, while
reaching similar or better accuracy.
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only admits analytical solutions in special cases. How-
ever, we argue in the following that the exact ground-
state wave function obeys a general functional structure.
We consider an arbitrary non-relativistic Hamiltonian of
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to be diagonal in position representation, defined by the
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times: lim⌧!1 �⌧ (X) /  0(X), provided that the initial
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|h 0|�0i| > 0. The non-orthogonality condition, in the
fermionic case, also implies that the wave function must
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In the second line above, we have used the mean-value
theorem for integrals, which states that under relatively
mild smoothness conditions, the value of the integral is
proportional to the value of the integrand computed at a
point belonging to the integration domain. We call this
special point Y(X) = (y1(X), ...,yN (X)), since the value

of the integral depends parametrically on the coordinates
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In the general case of a non-relativistic Hamiltonian,

Eq. (1), it can be shown that G⌧ (X,X0) � 0 for all values
ofX,X0. Moreover, the propagator is invariant under the
exchange of particle coordinates: G⌧ (Pij(X),Pij(X0)) =
G⌧ (X,X0). For fermionic wave functions, this invariance
implies that Y(X) must be equivariant under particle
exchange, Y(Pij(X)) = Pij(Y(X)), such that the re-
sulting total wave function remains antisymmetric. The
functional form found is then the product of a permu-
tationally symmetric and positive semi-definite function
J(X) = G⌧ (X,Y(X)) ⇥ Vol(⌦) and the reference state
computed at modified coordinates Y(X):

�⌧ (X) = J(X)⇥ �0(Y(X)). (5)

The many-body coordinate transformation entering the
amplitudes of the initial state coincides with the mean-
value point of the integrand in our derivation and is
an alternative justification for the backflow transforma-
tion [37] of single-particle coordinates.
In the simple case in which the initial state is a Slater
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above is exact, provided that the symmetric factor J(X)
and the mean-value coordinates Y(X) are chosen to sat-
isfy Eq. (4), and the reference state is not orthogonal to
the true ground state. An approximate but explicit form
for the coordinate transformation Y(X) can be obtained
by repeatedly applying the imaginary-time propagator to
the reference state in the limit of small ⌧ . This process
gives rise to the concept of an iterative backflow trans-
formation, as introduced in Ref. [40].
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in turn, opens up the possibility to use the Stochastic
Reconfiguration (SR) optimization technique [31], which
lowers the number of optimization steps needed to reach
convergence by about two orders of magnitude, while
reaching similar or better accuracy.
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theorem for integrals, which states that under relatively
mild smoothness conditions, the value of the integral is
proportional to the value of the integrand computed at a
point belonging to the integration domain. We call this
special point Y(X) = (y1(X), ...,yN (X)), since the value

of the integral depends parametrically on the coordinates
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In the general case of a non-relativistic Hamiltonian,

Eq. (1), it can be shown that G⌧ (X,X0) � 0 for all values
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G⌧ (X,X0). For fermionic wave functions, this invariance
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exchange, Y(Pij(X)) = Pij(Y(X)), such that the re-
sulting total wave function remains antisymmetric. The
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flow transformation is parameterized using highly flexi-
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At each iteration t of the network, we build a graph
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tions (nodes) x(t)
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2 RD1 and their interactions (edges)
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FIG. 1. Schematic representation of a message-passing neural network with T iterations. Dashed lines represent the concatena-
tion operations, while solid lines represent the parameterized transformations (linear transformations and nonlinear feedforward
neural networks). Messages, highlighted in pink, mediate the exchange of information between the one- and two-body streams,
in blue. A yellow box indicates a single iteration of the network.

For a given particle i, relevant messages are collected and
pooled together to destroy the ordering with respect to
all other particles j 6= i,
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⌘
. (19)

The pooling operation pool collapses the order of the
elements in the set it acts upon and produces a vec-
tor with the same dimension as an individual element.
Throughout this work, we use logsumexp-pooling, the
smooth variation of max-pooling.
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The functions Mt, Ft, and Gt are all unique FNNs with
the same output dimension as the linear preprocessors
A and B. By incorporating concatenated skip connec-
tions to the visible features, we guarantee that the signal
originating from the raw data remains discernible even
as the MPNN depth T increases. Finally, we combine

the resulting outputs h(T )
i and h(T )

ij into pairwise feature

vectors
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to feed into subsequent networks. The flow of information
through the MPNN can be visualized in Fig. 1. Notice
how the hidden features in a given layer depend on the
hidden features of the previous layer and the original
visible features.
For all our NQS, we use a Jastrow correlator based on

a Deep-Set [47] to enforce permutation invariance over
the set of all pairwise features
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Here, ⇢ and ⇣ are FNNs, and the pooling operation is the
same as in Eq. (19). While many Jastrow functions are
typically designed to satisfy Kato’s cusp condition [48]
for specific systems, we take a di↵erent approach and
allow our neural networks to learn the cusp fully. The
short-range behavior of the ground state is particularly
important for the UFG, so leaving our NQS completely
unbiased serves as an important test for evaluating the
overall capabilities of NQS.
The Slater-Jastrow ansatz with plane wave orbitals

(SJ-PW) does not require any additional neural networks
beyond ⇢ and ⇣, so it establishes a baseline for the num-
ber of trainable parameters in this work. On the other
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ceed to compute the overlap between these queries and
keys along the particle dimension (as opposed to the
feature dimension [42, 43]) and apply an element-wise
GELU non-linearity [44]. As a result, we obtain the
permutation-equivariant weights
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The above attention mechanism compares the environ-
ments of particle i and j, and e↵ectively increases the
order of correlations that can be embedded in the mes-
sages within one iteration of the network. The higher-
order correlations induced by the attention mechanism
are crucial to reducing network iterations and capturing
many-body e↵ects.

In addition to nodes x(t)
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also carries along and updates auxiliary variables known
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The functions �, f , and g introduced above are param-
eterized by Multilayer Perceptrons (MLPs). We build a
new graph with the same structure as the previous one,
with nodes and edges given by
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where [·, ·] denotes concatenation. Including the initial
inputs at t = 0, referred to as a “skip connection” in ML
literature [45], is an important ingredient to capture cor-
relations e�ciently and mitigate the vanishing gradient

problem. The initial hidden states h(0)
i

, h(0)
ij

are learn-
able free parameters which are independent of i and j to

respect permutation equivariance. The construction of

the initial feature vectors x(0)
i

, x(0)
ij

is problem dependent
and will be discussed in detail when showing a specific
application to the electron gas.
Finally, the backflow-coordinates are constructed as

yi(X) = ri + �ri(X). The displacements �ri (X) are
obtained by linearly transforming the node features of
the last graph at iteration t = T to d dimensions i.e.

�ri (X) = W ·x(T )
i

withW 2 Cd⇥D1 . The use of complex-
valued backflow transformations allows changing the am-
plitudes of the chosen single-particle orbitals as well as
representing complex-valued wave functions in general.
Inspired by the functional form of Eq. (6), we aug-

ment the orbitals with a permutation-invariant factor J

to yield a variational Ansatz whose functional structure
resembles the exact form of Eq. (6):

 (X) = det{'µ(yi(X))} . (13)

where 'µ(yi) = exp [J(Y, µ)]⇥ �µ(yi).

C. Electron Gas

We now specialize our discussion on the case of the ho-
mogeneous electron gas (HEG) in d = 3 spatial dimen-
sions, a prototypical model for the electronic structure
in a solid. It includes Coulomb interactions among the
solids’ electrons while treating the positively charged ions
of the solid as a uniform, static, positive background [46].
Despite these simplifications, the HEG exhibits di↵erent
phases of matter and captures certain properties of real
solids, particularly of Alkali metals. Consider a system
consisting of N electrons with an average electron den-
sity n = N
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where we introduce the Wigner-Seitz radius rs =
3
p

3/(4⇡n) as the characteristic length scale, and a con-
stant arising from the interactions of the electrons with
the static, positive background [38]. The conditionally
convergent series of the pairwise Coulomb interactions
is evaluated using the Ewald summation technique, as
is standard in the treatment of extended systems in
QMC [47–49]. We assume a fixed spin-polarization with
N = N" + N#, where N" (N#) denotes the number of
up/down spins. The spin of electron i is denoted by
si 2 {", #}. Furthermore, to access the bulk properties of
the system, we restrict it to a cubic simulation cell of side
length L, equipped with periodic boundary conditions
(PBCs) in all spatial directions. For the reference state
�0(X), we consider a mean-field wave function consisting
of a single Slater determinant constructed from single-
particle orbitals. The choice of orbitals is physically moti-
vated, and for the translation invariant HEG, plane wave
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plitudes of the chosen single-particle orbitals as well as
representing complex-valued wave functions in general.
Inspired by the functional form of Eq. (6), we aug-

ment the orbitals with a permutation-invariant factor J

to yield a variational Ansatz whose functional structure
resembles the exact form of Eq. (6):
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of the solid as a uniform, static, positive background [46].
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of a single Slater determinant constructed from single-
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Figure 1. Schematic illustration of the backflow transformation, which transforms single-particle coordinates ri 2 Rd (black
dots, top left) to quasi-particle coordinates �ri 2 Cd via the MPNN (black/white dots for real/imaginary part, top right).
The MPNN constructs an initial graph that consists of an initial feature vector (dark grey) and a hidden state (green). This
graph is then transformed via messages, defined in Eq. 7, to another graph consisting of the initial feature vectors and an
updated hidden state (indicated by di↵erent coloring). After the final iteration, the node states are linearly transformed to

the quasi-particle positions �ri = W · h(T )
i , which now contain information about all particles (D is the dimension of the last

graph’s nodes).

orbitals are a natural choice: �k(r) = exp [ik · r] with
k = 2⇡

L
n where n 2 Zd. To take into account spin, we use

the spin-orbitals �µ(r, s) = �kµ(r)�sµ,s, where s denotes
the spin of the particle at position r, and each spin-orbital
is characterized by the quantum numbers µ = (kµ, sµ).
This choice of orbitals allows us to fix the total momen-
tum of the system ktot =

P
N

i=1 ki. Furthermore, the
choice of orbitals allows us to factorize the determinant
into a product of determinants of up and down spin or-
bitals.

D. MP-NQS for the Electron Gas

To specialize the MP-NQS architecture to the HEG,
we only need to define the initial feature vectors. Since
the HEG is invariant under continuous translations and
spin inversion, we do not input single-particle informa-
tion (single-particle positions/spins) to the initial node
features. Instead, we use a learnable embedding vector
e 2 RD1 , that does not depend on the particle index i.
For the edge features, we use the translation invariant
particle-distances rij = ri � rj and their norm. To dis-
tinguish same- and opposite-spin pairs without breaking
the spin-inversion symmetry of the problem, we input
products of the form si · sj = ±1 to the edge features.

Overall, we get the following initial feature vectors:

x(0)
i

= e (15)

x(0)
ij

= [rij , krijk, si · sj ]. (16)

Notice that with this choice, the resulting backflow coor-
dinate yi preserves the spin quantum number si of the
particle i exactly.
To respect the PBCs of the simulation box, we apply

the method introduced in Ref. [21]. The components of
a vector r 2 Rd (where r can represent a single-particle
position vector ri or a distance vector rij) are mapped
to a Fourier basis r 7!

⇥
sin

�
2⇡
L
r
�
, cos

�
2⇡
L
r
�⇤

2 R2d and
the norm of the distance between two particles krijk is
replaced with a periodic surrogate krijk 7!

��sin
�
⇡

L
rij

���.
In sum, our Ansatz allows us to fix the total momen-

tum ktot, while being translation invariant and respecting
spin-inversion symmetry. Furthermore, the MP-NQS can
change the nodal surface with a number of variational pa-
rameters independent of the system size. The variational
Ansatz for the HEG uses around ⇠ 19000 variational pa-
rameters and can be trained within O(103) optimization
steps while reaching state-of-the-art accuracy. A detailed
comparison to other existing NQS approaches is given in
Appendix C.

Permutation equivariance —> message passing
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Time-dependent orbitals

�BF(x, t)
�(ri, t) ri

ri

rj

FIG. 1. Schematic representation of different approaches to capture correlations. Single-determinant approaches with single-
particle orbitals are mostly applicable where strong correlations can be neglected. Correlations can be built in using a polynomial
number of determinants, a multiplicative time-dependent Jastrow factor that depends on all the electron positions, or in
the most powerful case by using a determinant with higher-dimensional many-body time-dependent orbitals using backflow
transformations.

face dictated by the choice of single-particle orbitals, we
transform the orbitals into a set of multi-electron orbitals
introducing a “time-dependent backflow transformations”
(tBF), 'µ(ri, t) ! 'BF

µ
(ri, x, t) [82]. Hence, our varia-

tional time-dependent quantum many-body wave func-
tion reads [84]

�(x, t) = det
⇥
'BF

µ
(ri, x, t)

⇤
eJ(x,t). (4)

By using time-dependent backflow transformations, our
model obtains high expressive power, which allows us
to represent states that are significantly more correlated
compared to those obtained by mean-field calculations.
For a detailed description of the model, we refer to Ap-
pendix B. In Fig. 1, we provide a schematic overview of
how the time-dependent Jastrow and backflow transfor-
mations compare with traditionally used time-dependent
mean-field approaches.

An alternative and common choice is to forgo the direct
description of the wave function in continuous space and
introduce a finite basis set. In this case (second quan-
tization), the wave function Ansatz does not need to be
constrained to fulfill the correct permutation symmetry,
since it is automatically captured by the fermionic cre-
ation/annihilation operators and their anti-commutation
relations [85]. Instead of positions, states are represented
in the occupation number basis x = [n1, ..., nM ] (with
ni 2 {0, 1}) for a given set of M mean field orbitals
A = {�µ} (for example, based on Gaussian orbitals or
similar). We parameterize  (n1, ..., nM , t) directly with
a flexible variational function, such as a neural network,
with a set of time-dependent parameters ✓(t), without
explicit anti-symmetrization with determinants [1]. In
particular, we use a complex-valued, time-dependent Re-
stricted Boltzmann Machine (RBM) as in Ref. [64] (see
Appendix B for details).
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FIG. 2. Monopole Q for the harmonic interaction model with
30 particles, subject to a quench of the harmonic confinement
and a time-dependent interaction strength. (top panel) We
show the predictions with tVMC using the (i) time-dependent
constants Ansatz in green, and (ii) the neural quantum state
in orange, both introduced in the main text. We compare to
the exact solution in blue. The curves are overlapping and
therefore hardly distinguishable. (bottom panel) The relative
error �Q on the predicted monopole, averaged over a rolling
window of �t = 0.2 to reduce the effect of statistical noise.

III. RESULTS

A. Interacting fermions in one dimension

To demonstrate the validity of our approach to cap-
ture the time-dependent state of many-body systems, we
start with studying the exactly solvable harmonic inter-
action model in one dimension, describing harmonically
confined particles interacting via a harmonic potential:

V (x, t) =
NX

i=1

2

41

2
!(t)2r2

i
+

g(t)

2

NX

i>j

(ri � rj)
2

3

5 , (5)

where ! is the trap frequency and ri 2 R. In particular,
we simulate the dynamics of the system subject to a trap
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merical algorithms, interest has resurged in the explicit
time propagation of correlated systems. Including elec-
tron correlations to predict quantum dynamics beyond
mean-field approximations is a challenging task. One of-
ten resorts to a class of non-variational methods. For
example, only relatively recently has the real-time time-
dependent density functional theory (RT-TDDFT) ap-
proach been introduced within the local density approx-
imation (LDA) for studying dynamic response proper-
ties [26, 27]. Other recent examples are time-dependent
versions of multi-configuration self-consistent fields (MC-
SCF) [28–32], configuration interaction (CI) [33–39], al-
gebraic diagrammatic construction [40–46], coupled clus-
ter (CC) theories [35, 37, 47–56], dynamical mean-field
theory (DMFT) [57, 58], tensor networks [59–61] and
the density matrix renormalization group (DMRG) [62].
Each of the aforementioned methods faces inherent limi-
tations and/or scalability concerns. Mean-field methods
such as DFT and HF encounter difficulties in describing
correlation effects as explained above, while CI and CC-
based techniques exhibit unfavorable scaling as the size
of the system increases [63].

Wave-function-based techniques offer the potential for
systematically improvable accuracy and precise simula-
tions of electronic eigenstates and are routinely used to
capture ground states of electronic systems in contin-
uous space using variational Monte Carlo (VMC). Re-
cently, great progress has been made in the design of
variational wave function ansatze, by the introduction
of neural quantum states (NQS) with variational Monte
Carlo [64], producing impressively accurate solutions to
the electronic TISE [65–73]. NQS promise to provide
high-accuracy wave functions, capturing the entire en-
tanglement of the system, at an affordable computational
cost [63]. However, their application to study quantum
dynamics, where correlations are expected to be essen-
tial, remains an open problem. Indeed, to the best of our
knowledge, there exists no prior work that has success-
fully extended VMC to capture the real-time evolution of
electronic systems in continuous space, despite its possi-
ble impact on quantum chemistry and condensed matter.

In this work, we go beyond the mean-field approxima-
tion and introduce a novel technique for variational time-
dependent wave functions that can capture many-body
correlations. We use time-dependent variational wave
functions with Jastrow functions and backflow trans-
formations to accurately reproduce the time-dependent
wave functions of benchmark experiments, including the
solvable harmonic-interaction model, diatomic molecules
in an intense laser field, and quenched quantum dots.

II. TIME-DEPENDENT QUANTUM
MANY-BODY WAVE FUNCTIONS

Our aim is to capture the time evolution of | (t)i ac-
cording to Eq. (2), induced by Ĥ(t). For electron configu-
rations x = [r1, ..., rN ] in position space, the Hamiltonian

reads

Ĥ(t) = �
1

2

NX

i=1

r
2
ri + V (x, t), (3)

with time-dependent potential V . We will consider spin-
independent Hamiltonians and assume that all electrons
have a fixed spin-projection quantum number �i 2 {", #}.

A. Variational time evolution

We approximate the time-evolving state | (t)i using a
parametrized Ansatz |�(✓(t))i with time-dependent pa-
rameters ✓(t) =

⇥
✓1(t), ..., ✓Np(t)

⇤
, reducing the problem

to finding the optimal ✓(t) such that | (t)i ⇡ |�(✓(t))i.
In Section V A, we illustrate how the trajectories ✓(t) are
obtained using the time-dependent variational principle
[18, 60, 61]. We discuss the generalization of MacLach-
lan’s variational principle into a framework for corre-
lated many-body wave functions, called tVMC, in Sec-
tion V B. This has recently also been demonstrated for
bosonic systems [74, 75], quantum many-body spin sys-
tems arising in condensed matter physics [76–81] and
for modeling fermionic lattice Hamiltonians (the Fermi-
Hubbard model) [82]. Our work is concerned with its
application to ab initio many-electron systems in con-
tinuous space, which is relevant to quantum chemistry
and condensed matter and which has remained elusive
so far. Additionally, in Section VC, we introduce a novel
approach that combines tVMC with Taylor-root expan-
sions to achieve precise evolution of parameterized quan-
tum states, further enhancing the method’s capabilities
in this new context, especially in conjunction with neural
network ansatze.

B. Variational wave-function models

Since the Hamiltonian operator is Hermitian and time-
reversal symmetric, one can restrict oneself to real wave
functions when solving the static TISE problem [83].
However, to model quantum dynamics, complex wave
functions are generally required. We will introduce vari-
ational models in terms of electron positions [r1, ..., rN ]
in a continuous position space. The wave function ansatz
must obey the correct permutation symmetry under the
exchange of particles, that is, it must be made antisym-
metric under electronic permutations. To this end Slater
determinants are routinely used, constructed from a set
of M complex, time-dependent, single-particle mean field
orbitals M = {'⌫(r)}M⌫=1 (we drop the parameter depen-
dence to simplify the notation). We can go beyond this
mean-field approximation and capture many-body cor-
relations using, for example, a complex symmetric Jas-
trow factor dependent on time J(x, t) that depends on
the complete many-body configuration x [75]. To cap-
ture additional correlations and change the nodal sur-
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Large Systems.– For N = 54 particles, accurate re-
sults are obtained with the FCI method [34]. At this
system size, the energy di↵erences per particle are smaller
than for N = 14, suggesting size-consistency of our
Ansatz, provided that the FCI method is size consis-
tent as well. When compared to purely variational meth-
ods, we obtain significantly better ground-state energies
than FN-DMC and BF-DMC, especially at high densi-
ties. This is in stark contrast to the (FermiNet-based) ar-
chitecture of [27] (dubbed LiNet in the following), which
does not improve upon BF-DMC energies over the whole
density regime (see Fig. 2, bottom). At rs � 50, we
observe improved results using the MP-NQS with Gaus-
sian orbitals compared to plane-waves (see Fig. 2, bottom
panel, yellow line). This strongly suggests a transition
from a de-localized Fermi liquid to a localized crystalline
phase as expected from previous studies [35, 54]. To ana-
lyze finite size e↵ects, we also simulate a larger system of
N = 128 electrons at rs = 50, 110, 200, and confirm that
Gaussian orbitals lead to lower ground-state energies,
compared to the plane-waves for rs > 50 (see Supplemen-
tary Material). Furthermore, for rs = 110, 200 the crys-
talline character of the variational state can be clearly
seen in the radial distribution functions and correspond-
ing structure factors displayed in Fig. 3. The prominent
peak in the structure factor and the pronounced density
fluctuations in the radial distribution function up to the
maximum distance of L/2, indicate the crystalline nature
of the represented state. Note that these are absent for
rs = 50, suggesting a fluid state.

Conclusions.– We have introduced MP-NQS, a novel
NQS architecture that leverages MPNNs to build highly
expressive backflow coordinates. We demonstrate its
power on the HEG system, reducing the number of pa-
rameters by orders of magnitudes compared to state-of-
the-art NQS in continuous space while reaching at par or
better accuracy. We also show improvement upon state-
of-the-art BF-DMC results on large systems. The favor-
able scaling allows us to accurately simulate large peri-
odic electronic systems, previously inaccessible to state-
of-the-art NQS models. We increase the available system
sizes from N = 27 and N = 54 electrons in periodic sys-
tems [22, 23, 27] toN = 128 electrons in this work. Hence
we open the door to extrapolation methods to the ther-
modynamic limit for extended systems. Furthermore, we
reproduce the liquid-crystal phase transition of the HEG
around rs = 100, matching previous predictions on the
transition density [35, 54, 55], showing the MP-NQS ca-
pability to describe di↵erent phases of matter quantita-
tively better than previous studies of the HEG based on
neural quantum states [23]. In addition to the numerical
results, we also introduced an analytical argument, justi-
fying commonly adopted backflow transformations. Our
argument shows that a backflow transformation over a
reference state is su�cient to obtain the exact ground-
state wave function. It will be of particular interest to
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Figure 3. Spin-averaged radial distribution function (top)
and corresponding structure factor (bottom) for the HEG sys-
tem with N = 128 electrons at rs = 50, 110, 200. For rs = 50
we used plane-waves as reference state while for rs = 110, 200
Gaussian orbitals centered at BCC lattice sites were used. Er-
ror bars are smaller than the symbols. The crystal and liquid
benchmarks are obtained from [54] for rs = 110.

characterize the geometrical properties of these transfor-
mations and understand in what cases neural-network
parameterizations can e�ciently describe them.
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FIG. 1. Accurate and automatic detection of the Wigner
crystal transition. The ground-state energies from varia-
tional optimization of the unified (MP)2NQS ansatz systemat-
ically outperform state-of-the-art results from di↵usion Monte
Carlo (DMC) using separate variational ansatze as trial wave
functions (top panel). Statistical error of energies from the
(MP)2NQS ansatz is smaller than the line width. The inset
shows a study near the WC transition using transfer learning,
which preserves the character of the state while changing its
density. The bottom panel shows the Bragg peak values in
the static structure factor S(k) calculated from (MP)2NQS.
The shaded region indicate uncertainty from the optimization
process as discussed in the main text. Results here are ob-
tained from simulation cells containing N = 56 electrons.

transferred the liquid state found at rs = 36 up to 38
and the crystal state found at rs = 38 down to rs = 36.
The energy crossing gives a transition point of rs = 36.5.
After applying finite-size corrections using energies from
DMC [4] (which is less costly to run for larger simulation
sizes), we obtain an estimated critical value for the WC
transition: rs = 37± 1.

The main advantage of the (MP)2NQS is that, within
the same ansatz, correlated phases such as the WC can
be automatically discovered. Further, once an NQS has
been optimized, many physical observables can be cal-
culated to high precision to characterize the discovered
phase. DMC has been the standard for accurate char-
acterization of ground-state properties in jellium. There
have been years of sophisticated development and opti-
mization since the early landmark calculation [1]. That
the variational energy is lower than DMC is important,
not so much for the quantitative improvement, but as a
strong indication of the quality of the (MP)2NQS wave

FIG. 2. Charge-charge correlations for representative densi-
ties, shown as (a) the pair correlation function g̃(r), and (b)
the static structure factor S(k). The main panels show the
radially averaged quantities, while the insets show the full two
dimensional versions. Each inset is divided into two halves,
with the left showing rs = 10 and the right showing rs = 40.
At rs = 40, long-range correlation is evident from the per-
sistent oscillations in the tail of g̃(r) and the corresponding
Bragg peak (pink star) in S(k). Results shown in the insets
are from N = 120.

function.

We next examine the properties of the (MP)2NQS
ground state as a function of rs. We compute spin-
resolved one- and two-body density functions: ⇢↵(r) =
h |⇢̂↵(r)| i and ⇢↵,�2 (r, r0) = h |⇢̂↵(r)⇢̂�(r0)| i, where
↵ and � are spin indices (2 {", #}) and ⇢̂↵(r) is the den-
sity operator at r for spin ↵. The uniform pair correlation
function is

g̃(r) =
⌦

N(N � 1)

Z
dr0

X

↵,�2{",#}

⇢↵,�2 (r0, r0 + r) , (6)
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FIG. 6. Upper panel: Energy per particle in the BCS-BEC
crossover region as a function of the scattering length a for
a fixed e↵ective range kF re = 0.2. Lower panel: Di↵erence
between Pfa�an-Jastrow with backflow (PJ-BF) and DMC-
BCS benchmark energies. See Table II for the corresponding
values of v0 and µ.

(MPNN) to encode pairing and backflow (BF) correla-
tions. We evaluate its performance against comparable
Slater-Jastrow (SJ) ansätze with identical MPNN archi-
tectures. Our results indicate that increasing the depth
of the MPNN systematically improves the performance
of the SJ ansätze, but backflow correlations within the
single-particle picture are still insu�cient in capturing
all pairing correlations. However, we demonstrate that a
simple and compact PJ-BF ansatz surpasses the DMC-
BCS benchmark with ease.

Transfer learning has proven to be an essential tool in
this work. It enables the realization of the unitary limit
in a controlled manner, mitigating the risk of becoming
trapped in local minima. It also allows for the e�cient
exploration of regions beyond unitarity, unlocking new
avenues for studying the BCS-BEC crossover. Transfer
learning will remain a crucial part of our training pro-
cedure as we move to larger systems. All unpolarized
systems can be treated with a single architecture, while
the N ± 1 systems can be treated by introducing one
additional FNN to represent the unpaired single-particle
orbital. This modification is straightforward to imple-
ment, making the calculation of the gap more accessible
and enabling further advancements in our work.

Besides calculating the gap, our next steps include a
direct comparison with the STU Pfa�an wave function
of Ref. [32]. We also plan to perform a more careful
extrapolation to the re ! 0 limit since we have used rel-
atively large values of kF re for this initial investigation.
However, more hyperparameter tuning will be needed,
especially about the width of the hidden layers, since the
smaller values of re will require more flexibility.

Our Pfa�an-Jastrow-Backflow NQS displays immense
potential in the study of ultra-cold Fermi gases. Unlike
conventional methods, our PJ-BF ansatz is not subject
to biases arising from physical intuition or a lack thereof,
as it does not require specifying a particular form for the
pairing orbitals. For this reason, it can be readily applied
to other strongly-correlated systems, including molecules
and other strongly-correlated quantum systems. In stark
contrast to the commonly used geminal wave function,
our ansatz does not rely on ordering the spin of the inter-
acting fermions, and it is therefore amenable to Hamilto-
nians that exchange spin, such as those modeling nuclear
dynamics. In this regard, we anticipate calculations of
atomic nuclei and low-density isospin-asymmetric nucle-
onic matter and carry out detailed investigations on the
nature of nuclear pairing [56].
When the stochastic reconfiguration algorithm and

transfer learning techniques are combined with the en-
forcement of translational, parity, and time-reversal sym-
metries, highly non-perturbative correlations can be en-
coded in a small number of parameters by modern stan-
dards. This approach will pave the way for future devel-
opments in the study of many-body systems, as it o↵ers
a powerful tool for encoding correlations in a compact
and computationally feasible manner.

Note Added: A work very recently appeared in pre-
print [57] introduces neural backflow transformations in
a geminal wave function and studies the unitary Fermi
gas. We leave systematic comparisons between the two
approaches to future works while already observing that
the Pfa�an wave function is a strict generalization of the
Geminal state [32, 58].
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fluctuations in the radial distribution function up to the
maximum distance of L/2, indicate the crystalline nature
of the represented state. Note that these are absent for
rs = 50, suggesting a fluid state.

Conclusions.– We have introduced MP-NQS, a novel
NQS architecture that leverages MPNNs to build highly
expressive backflow coordinates. We demonstrate its
power on the HEG system, reducing the number of pa-
rameters by orders of magnitudes compared to state-of-
the-art NQS in continuous space while reaching at par or
better accuracy. We also show improvement upon state-
of-the-art BF-DMC results on large systems. The favor-
able scaling allows us to accurately simulate large peri-
odic electronic systems, previously inaccessible to state-
of-the-art NQS models. We increase the available system
sizes from N = 27 and N = 54 electrons in periodic sys-
tems [22, 23, 27] toN = 128 electrons in this work. Hence
we open the door to extrapolation methods to the ther-
modynamic limit for extended systems. Furthermore, we
reproduce the liquid-crystal phase transition of the HEG
around rs = 100, matching previous predictions on the
transition density [35, 54, 55], showing the MP-NQS ca-
pability to describe di↵erent phases of matter quantita-
tively better than previous studies of the HEG based on
neural quantum states [23]. In addition to the numerical
results, we also introduced an analytical argument, justi-
fying commonly adopted backflow transformations. Our
argument shows that a backflow transformation over a
reference state is su�cient to obtain the exact ground-
state wave function. It will be of particular interest to
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Figure 3. Spin-averaged radial distribution function (top)
and corresponding structure factor (bottom) for the HEG sys-
tem with N = 128 electrons at rs = 50, 110, 200. For rs = 50
we used plane-waves as reference state while for rs = 110, 200
Gaussian orbitals centered at BCC lattice sites were used. Er-
ror bars are smaller than the symbols. The crystal and liquid
benchmarks are obtained from [54] for rs = 110.

characterize the geometrical properties of these transfor-
mations and understand in what cases neural-network
parameterizations can e�ciently describe them.
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when g(t) = g/L(t)4 [67], with g the original interac-
tion strength at t < 0. Here, V(x) is the Vandermonde
matrix, equivalent to a Slater determinant with orbitals
'µ(r) = rµ�1, with µ = 1, ..., N . The time-dependent
scale functions L(t), ↵(t), and �(t) can be derived analyt-
ically and are given in Appendix I. To study the breathing
mode with a variational method, we carry out two exper-
iments to demonstrate that tVMC can capture fermionic
time-dependent correlations: (i) we parameterize ↵(t),
�(t), L(t) with time-dependent constants, and (ii) we
represent the correlation contribution to the Jastrow Jint

with a neural quantum state (NQS) Ansatz. For the
latter, we use two general DeepSet neural network ar-
chitectures (as introduced in Ref. [68] to model bosonic
ground states), one for Re [Jint] and one for Im [Jint],
with time-dependent parameters. This choice of archi-
tecture guarantees the particle-permutation invariance of
the Jastrow factor. In Figure 2 we compare the evolution
of the monopole Q =

P
N

i

⌦
r2
i

↵
as a function of time for

30 fermions and !0 = 1 ! !f = 2 and g = 1, using the
parameterizations mentioned earlier. We observe that
the breathing mode and correlations are both accurately
reproduced with the tVMC method, thus validating our
approach.

B. Molecules in a laser field

We study the electronic optical response of a diatomic
molecule in an intense time-dependent laser field. The
electronic potential with NA atoms at positions {Ra}

Na
a=1

reads (in atomic units)

V (x, t) =
NX

i<j

1

kri � rjk
�

NX

i

NAX

a

Za

kri �Rak
+ Vext(x, t)

(8)

where we introduced the charge number Za and an ex-
ternal potential Vext(x, t) describing a linearly polarized
and spatially homogeneous electric field (see Ref. [10] and
Appendix F). Hatree-Fock is known to fall short in prop-
erly describing the dissociation curve of H2, especially
at larger distances [69]. Therefore, we will consider H2

separated at twice its equilibrium distance. In Fig. 3
we show the induced dipole moment for H2 modelled in
first and second quantization. The initial state of the
various approaches is their respective approximation to
the ground state H2, and therefore can differ depending
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FIG. 3. Time-dependent dipole moment of H2 in an intense,
time-dependent laser field modeled with an NQS and tVMC.
We show the effect of capturing correlations with a time-
dependent neural backflow (S+BF) transformation, compared
to a mean-field Slater determinant (S), as well as results ob-
tained in the STO-3g basis in second quantization (RBM).
We compare to predictions from TDHF and ED.

on the model. The ground state results are summarized
in Appendix F. In second quantization, even exact di-
agonalization (ED) does not provide the exact ground-
state energy since the accessible Hilbert space is limited
by the restricted basis set. The effect of correlations
(i.e. ED versus HF predictions) can be mainly observed
in oscillation amplitudes, as well as the interference be-
havior superimposed on the electric-field-induced oscil-
latory behavior. In comparison to TD-HF, tVMC with
tNQS using the same basis set reproduces the ED results,
thereby demonstrating that tNQS can accurately capture
the electron correlations, even in a limited basis set. In
first quantization in continuous space, we use a neural
network ansatz, inspired by PauliNet [53], using a mod-
ified version of the powerful particle-attention backflow
transformations recently introduced in Ref. [54] for appli-
cations to the homogeneous electron gas. The latter has
recently also found successful applications to quantum
materials [70] nuclear matter [71], and ultra-cold dilute
matter [72]. The details about the model are given in Ap-
pendix B 1. First, as a validation, we observe that tVMC
with a pure mean field Slater determinant reproduces the
predictions from TDHF in the same basis, albeit that
tVMC scales more favorably with the size of the basis
set, i.e. O(M)3 compared to O

�
M4
�

(see Appendix D
on scalability). However, by including a time-dependent
backflow, the time-evolution of the dipole changes by tak-
ing into account electron correlations that appear to have
a damping effect on the oscillation.

C. Quenched electronic quantum dot

Interest in time-dependent properties of quantum sys-
tems spans various domains, including correlated elec-
trons in metal clusters, quantum dots, and ultracold

Quantum dots & diatomic molecules 
J.Nys, et al, Nat Comm (2024)

Nuclear physics: nuclear binding

Gnech, et al, PRL (2023)

2

a novel computational protocol that allows the NQS to
learn the preferred polarization of the nucleus.

Methods.— We model the interactions among pro-
tons and neutrons with the LO /⇡EFT Hamiltonian, “o”,
developed in Ref. [30]. The nucleon-nucleon potential re-
produces the np scattering lengths and e↵ective ranges in
the S/T = 0/1 and 1/0 channels, and it vanishes in odd
partial waves. We assume the electromagnetic compo-
nent to only include the Coulomb force between finite-size
protons. A repulsive three-body force is needed to stabi-
lize the systems with more than two nucleons against the
Thomas collapse. AFDMC and VMC-NQS calculations
showed that the choice R3 = 1.0 fm for the three-nucleon
regulator overbinds 16O and heavier nuclei [30, 42]. To
counter it, we opt for R3 = 1.1 fm, as the extended range
introduces additional repulsion in heavier systems.

We introduce X = {x1 . . . xA} to denote the set of
single-particle coordinates xi = {ri, szi , tzi }, which de-
scribe the spatial positions and the z-projection of the
spin-isospin degrees of freedom of the A nucleons. The
hidden-nucleon wave function [42, 46] reads

 HN (X) ⌘ det


�v(X) �v(Xh)
�h(X) �h(Xh)

�
, (1)

where, �v and �h denote the visible and hidden orbitals,
while X and Xh are the A visible and the Ah hidden
coordinates. Hence, the dimension of the sub-matrices
�v(X), �v(Xh), �h(X), and �h(Xh) are A⇥A, Ah ⇥A,
A⇥Ah, and Ah⇥Ah, respectively. As a major departure
from Ref. [42], all the above matrices are complex val-
ued, and two separate deep neural networks with di↵er-
entiable activation functions parametrize the logarithm
of their moduli and phases. To respect fermion anti-
symmetry, the coordinates of the hidden nucleons Xh

are permutation-invariant functions of the visible ones.
We enforce this symmetry using a Deep-Sets architec-
ture [47, 48] with logsumexp pooling.

As in recent neutron-matter studies [31], we improve
the flexibility of the ansatz by applying equivariant back-
flow transformations to pre-process the single-nucleon co-
ordinates and include correlation e↵ects. These transfor-
mations are implemented by means of a simplified version
of the MPNN employed in Refs. [44, 45]

yi = h

⇣
xi,

X

j

m(xi,xj)
⌘
. (2)

Due to the universality of the hidden-nucleon ansatz,
the single, albeit enlarged Slater determinant in Eq.(1)
is su�cient for modeling the ground-state wave function
of both closed- and open-shell nuclei, regardless of their
deformation. This characteristic represents a significant
advantage compared to “conventional” quantum Monte
Carlo methods, where multiple Slater determinants are
required to model open-shell systems [49, 50]. In stark

FIG. 1. VMC-NQS energy per particle (upper panel) and
charge radii (lower panel) of selected nuclei with up to A = 20
nucleons as obtained from the LO EFT Hamiltonian “o” of
Ref. [30] with R3 = 1.1 fm compared with experimental data.

contrast with the majority of nuclear many-body meth-
ods, the shell structure of the nucleus is not directly en-
coded in the NQS, as the parameters of the network are
randomly initialized and no pre-training on a Hartree-
Fock wave function is performed. All ground-state prop-
erties self-emerge during the training of the network,
which is performed by minimizing the variational energy
of the system. For this purpose, we employ the stochastic
reconfiguration algorithm [51] with regularization based
on the RMSprop method [42]. The expectation value
of the Hamiltonian and other quantum-mechanical op-
erators of interest is evaluated stochastically using the
Metropolis-Hastings algorithm detailed in the Supple-
mental Material of Ref. [39], sampling both the spatial
and spin-isospin coordinates of the A nucleon
Results.— The upper panel of Fig. 1 displays the

ground-state energies per nucleon of selected A  20
nuclei obtained solving the ground-state of the /⇡EFT
Hamiltonian with the VMC-NQS method. The agree-
ment between the computed and experimental values is
remarkably good, given the simplicity of the /⇡EFT in-
put Hamiltonian. Notably, our ground-state energies
are closer to experimental values than those obtained in

Bosonic systems (4He), D.Linteau, J.Nys, et al., to appear
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Bilayer (moiré) materials 
Di Luo, et al., arXiv:2311.02143 (2023)

Ionization energies of molecules 
Gao, et al., arXiv:2405.14762 (2024)

In all applications: competitive or better 
than existing methods

2D Electron gas 
C.Smith, et al, 2405.19397 (2024)



Real-time quantum dynamics
One of the most significant problems of modern quantum physics

No reliable classical methods available: approximations for ground states break down 

Quantum dynamics = flagships application of quantum computing
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Examples: 

- Excited states information

- Spectroscopic experiments 

- Nonlinear responses

- Relaxation

- …
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State of the art: classical methods
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Quantum chemistry & material science 
TD-HF 
MC-TDHF 
RT-TDDFT 
TD-Configuration Interaction (CI) 
TD-Coupled cluster (CC) 

Idea: close to mean field 
Challenge: scaling with particles & correlations 
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Space relevant for dynamics

Condensed matter 
Exact diagonalization 
Tensor networks 

Idea: close to ground states with area law 
Challenge: scaling with entanglement

VMC?

J. Hermann, Nature Reviews Chemistry (2023)

How can we go beyond 
DFT and HF to properly 

account for electron 
correlation in real time? 

Li, et al, Chem Rev (2020)

Need for new methods to account for strong correlations in real-time dynamics!



Can we transform them into accurate methods to solve real-time quantum 
dynamics problems?
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Given recent progress in variational methods for ground-state problems 
with strong correlations:



Variational dynamics
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Variational solution
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Dynamics: approach 2
Projected tVMC: maximize the overlap between 


time evolved state
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Hamiltonians, in contrast to the non-symplectic McL ap-
proach. For a discussion and comparison of the various
TDVPs available, we refer to Refs. [105–107]. Further-
more, explicit projection methods have recently been in-
troduced [78, 80, 108]. For simplicity, we will assume
in this section that all parameters are complex and the
wave function Ansatz is holomorphic. We minimize the
(Fubini-Study) distance between the time-evolved state��� ̃(t+ �t)

E
and the parametrized state |�(✓(t+ �t))i,

setting ✓(t + �t) = ✓(t) + ✓̇(t)�t for small time-steps �t,
to obtain a first-order differential equation for the varia-
tional parameter velocities ✓̇,

NpX

k0

Gk,k0(t)✓̇k0(t) = �iFk(t), (10)

with the Quantum Geometric Tensor G (QGT) and the
energy gradients F given by

Gk,k0(t) =

⌧
@

@✓k
�(✓(t))

����
@

@✓k0
�(✓(t))

�
, (11)

Fk(t) =

⌧
@

@✓k
�(✓(t))

����Ĥ(t)

�����(✓(t))
�
. (12)

B. Time-Dependent Variational Monte Carlo
(tVMC)

Although MacLachlan’s and Dirac-Frenkel’s varia-
tional principle were originally introduced in conjunction
with mean-field states, one can generalize the approach to
incorporate many-body correlations. Therefore, we for-
mulate the variational time evolution using Monte Carlo
estimates to integrate the system over the exponentially
large Hilbert space, as we will demonstrate in this sec-
tion. We aim to capture the dynamics of the probability
amplitudes  (x, t) ⌘ hx| (t)i 2 C, which we parameter-
ize as �(x, ✓(t)) ⌘ hx|�(✓(t))i. Here, x represents a set
of continuous electron positions and spins, or an occupa-
tion configuration in a given basis set. Since the Hilbert
space scales exponentially with the system size, we resort
to Monte Carlo estimates of the quantities in Eqs. (11)
and (12). The time-dependent variational principle in
combination with Monte Carlo is referred to as time-
dependent Variational Monte Carlo (tVMC) [75, 89, 109].
For a given trial wave function, the energy can be com-
puted using (we drop the time dependence to simplify
the notation),

E = E
x⇠|�(x,✓)|2 [Eloc(x)] , (13)

where we introduced the local energy Eloc(x) =
[Ĥ�](x,✓)
�(x,✓) .

Furthermore, by introducing the log derivative of the
wave function with respect to parameter ✓k: Ok(x) =

@✓k log�(x, ✓), we obtain the following estimators

Gk,k0 = E
x⇠|�(x,✓)|2 [O

⇤
k
(x)�Ok0(x)] , (14)

Fk = E
x⇠|�(x,✓)|2 [O

⇤
k
(x)�Eloc(x)] , (15)

where �Eloc(x) = Eloc(x) � E and �Ok(x) = Ok(x) �
E
x0⇠|�(x0,✓)|2 [Ok(x0)]. We refer to Appendix A for more

details.
After estimating the energy derivatives and quantum

geometric tensor using Eqs. (15) and (14), we solve
the linear system of equations in Eq. (10) using the
regularized singular value decomposition introduced in
Refs. [81, 110]. An unbiased estimate of the QGT and
a stable and accurate inversion of the latter is essen-
tial to time-evolve the parametrized state with tVMC,
and can become challenging in the large-parameter limit
relevant for highly expressive neural-network-based wave
functions. For this reason, in the next section we in-
troduce a complementary approach more suitable when
considering such regime.

C. Taylor-root expansion tVMC (tre-tVMC)

We introduce an additional method to evolve a
parametrized quantum state using variational Monte
Carlo. Our central goal is again to maximize the fidelity
between the true time-evolved state | (t+ �t)i, and a
state on the variational manifold |�(✓)i. For this task,
we first consider a Taylor expansion consistent to order K
in �t. Rather than evaluating higher orders in Ĥ directly
(which is computationally expensive, especially in contin-
uous space), we compute these through sequential opti-
mizations. One possible approach is to variationally com-
press the states in the Krylov basis {1, Ĥ, Ĥ2, ...} | (t)i,
yet this proves challenging in practice, since these basis
states are significantly different from the initial reference
state | (t)i. A more convenient method is to target in-
termediate states that are at most O(�t) different from
| (t)i, thereby greatly reducing the computational bur-
den. With this idea in mind, we factorize the time evo-
lution operator as

e�i�tĤ =
KY

k=1

R̂k +O
�
�tK+1

�
, (16)

and set R̂k = 1 � ick�tĤ with constants ck 2 C to be
determined. The latter can be obtained by equating
Eq. (16) to the Taylor expansion of the propagator. In
other words, we rewrite the propagator in terms of the
roots of the Taylor polynomials associated with the ex-
ponential function (which we refer to as the Taylor roots
expansion) [111]. For example, for K = 2 this results
in ck = (1 ± i)/2. Hence, we sequentially optimize the
fidelity for the evolution operators

R̂1 = 1� i�t
�
1+i

2

�
Ĥ, R̂2 = 1� i�t

�
1�i

2

�
Ĥ. (17)
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[Ĥ�](x,✓)
�(x,✓) .

Furthermore, by introducing the log derivative of the
wave function with respect to parameter ✓k: Ok(x) =

@✓k log �(x, ✓), we obtain the following estimators

Gk,k0 = E
x⇠|�(x,✓)|2 [O

⇤
k
(x)�Ok0(x)] , (14)

Fk = E
x⇠|�(x,✓)|2 [O

⇤
k
(x)�Eloc(x)] , (15)

where �Eloc(x) = Eloc(x) � E and �Ok(x) = Ok(x) �
E
x0⇠|�(x0,✓)|2 [Ok(x0)]. We refer to Appendix A for more

details.
After estimating the energy derivatives and quantum

geometric tensor using Eqs. (15) and (14), we solve
the linear system of equations in Eq. (10) using the
regularized singular value decomposition introduced in
Refs. [81, 110]. An unbiased estimate of the QGT and
a stable and accurate inversion of the latter is essen-
tial to time-evolve the parametrized state with tVMC,
and can become challenging in the large-parameter limit
relevant for highly expressive neural-network-based wave
functions. For this reason, in the next section we in-
troduce a complementary approach more suitable when
considering such regime.

C. Taylor-root expansion tVMC (tre-tVMC)

We introduce an additional method to evolve a
parametrized quantum state using variational Monte
Carlo. Our central goal is again to maximize the fidelity
between the true time-evolved state | (t+ �t)i, and a
state on the variational manifold |�(✓)i. For this task,
we first consider a Taylor expansion consistent to order K
in �t. Rather than evaluating higher orders in Ĥ directly
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Example: Taylor expansion matching
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FIG. 1. Schematic representation of different approaches to capture correlations. Single-determinant approaches with single-
particle orbitals are mostly applicable where strong correlations can be neglected. Correlations can be built in using a polynomial
number of determinants, a multiplicative time-dependent Jastrow factor that depends on all the electron positions, or in
the most powerful case by using a determinant with higher-dimensional many-body time-dependent orbitals using backflow
transformations.

body wave function reads [64]

�(x, t) = det
⇥
'BF

µ
(ri, x, t)

⇤
eJ(x,t). (4)

Using time-dependent backflow transformations, our
model obtains high expressive power, which allows us
to represent states that are significantly more corre-
lated compared to those representable with mean-field
single-particle orbitals. For a detailed description of the
model, we refer to Appendix B. In Fig. 1, we provide a
schematic overview of how the time-dependent Jastrow
and backflow transformations compare with traditionally
used time-dependent mean field approaches.

An alternative and common choice is to forgo the di-
rect description of the wave function in continuous space
and introduce a finite basis set. In this case (second
quantization), the wave function Ansatz does not need
to be constrained to fulfill the correct permutation sym-
metry, since it is automatically captured by the fermionic
creation/annihilation operators and their anticommuta-
tion relations [65]. Instead of positions, states are repre-
sented in the occupation number basis x = [n1, ..., nM ]
(with ni 2 {0, 1}) for a given set of M mean-field orbitals
A = {�µ} (e.g. based on Gaussian orbitals or similar).
We parameterize  (n1, ..., nM , t) directly with a flexible
variational function, such as a neural network, with a
time-dependent parameter set ✓(t), without explicit anti-
symmetrization with determinants [1]. In particular, we
use a complex-valued, time-dependent Restricted Boltz-
mann Machine (RBM) as in Ref. [51] (see Appendix B
for details).

III. RESULTS

A. Interacting fermions in one dimension

To demonstrate the validity of the approach to cap-
ture the time-dependent state of many-body systems, we
start with studying the exactly solvable harmonic inter-
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FIG. 2. Monopole Q for the harmonic interaction model with
30 particles, subject to a quench of the harmonic confinement
and a time-dependent interaction strength. We show the pre-
dictions with tVMC using the (i) time-dependent constants
Ansatz in blue, and (ii) the neural quantum state in green,
both introduced in the main text. We compare to the exact
solution in yellow. The curves are overlapping and therefore
hardly distinghuisable.

action model in one dimension, describing harmonically
confined particles interacting via a harmonic potential:

V (x, t) =
NX

i=1

2

41

2
!(t)2r2

i
+

g(t)

2

NX

i>j

(ri � rj)
2

3

5 , (5)

where ! is the trap frequency. In particular, we simu-
late the system’s dynamics subject to a trap quench for
which an analytical solution is known [66, 67]. When
the trap frequency is quenched from !0 ! !f at time
t = 0, the particles exhibit a breathing mode with period
T = ⇡/!f for a well-chosen time-dependent interaction
strength g(t). In particular, the time-evolved state reads
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(with ni 2 {0, 1}) for a given set of M mean-field orbitals
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We parameterize  (n1, ..., nM , t) directly with a flexible
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for details).

III. RESULTS

A. Interacting fermions in one dimension

To demonstrate the validity of the approach to cap-
ture the time-dependent state of many-body systems, we
start with studying the exactly solvable harmonic inter-

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Time

20

30

40

50

60

70

80

90

M
on

op
ol
e
Q

Exact tVMC (Cte) tVMC (NQS)

FIG. 2. Monopole Q for the harmonic interaction model with
30 particles, subject to a quench of the harmonic confinement
and a time-dependent interaction strength. We show the pre-
dictions with tVMC using the (i) time-dependent constants
Ansatz in blue, and (ii) the neural quantum state in green,
both introduced in the main text. We compare to the exact
solution in yellow. The curves are overlapping and therefore
hardly distinghuisable.

action model in one dimension, describing harmonically
confined particles interacting via a harmonic potential:

V (x, t) =
NX

i=1

2

41

2
!(t)2r2

i
+

g(t)

2

NX

i>j

(ri � rj)
2

3

5 , (5)

where ! is the trap frequency. In particular, we simu-
late the system’s dynamics subject to a trap quench for
which an analytical solution is known [66, 67]. When
the trap frequency is quenched from !0 ! !f at time
t = 0, the particles exhibit a breathing mode with period
T = ⇡/!f for a well-chosen time-dependent interaction
strength g(t). In particular, the time-evolved state reads
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lated compared to those representable with mean-field
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where ! is the trap frequency. In particular, we simu-
late the system’s dynamics subject to a trap quench for
which an analytical solution is known [66, 67]. When
the trap frequency is quenched from !0 ! !f at time
t = 0, the particles exhibit a breathing mode with period
T = ⇡/!f for a well-chosen time-dependent interaction
strength g(t). In particular, the time-evolved state reads
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when g(t) = g/L(t)4 [67], with g the original interac-
tion strength at t < 0. Here, V(x) is the Vandermonde
matrix, equivalent to a Slater determinant with orbitals
'µ(r) = rµ�1, with µ = 1, ..., N . The time-dependent
scale functions L(t), ↵(t), and �(t) can be derived analyt-
ically and are given in Appendix I. To study the breathing
mode with a variational method, we carry out two exper-
iments to demonstrate that tVMC can capture fermionic
time-dependent correlations: (i) we parameterize ↵(t),
�(t), L(t) with time-dependent constants, and (ii) we
represent the correlation contribution to the Jastrow Jint

with a neural quantum state (NQS) Ansatz. For the
latter, we use two general DeepSet neural network ar-
chitectures (as introduced in Ref. [68] to model bosonic
ground states), one for Re [Jint] and one for Im [Jint],
with time-dependent parameters. This choice of archi-
tecture guarantees the particle-permutation invariance of
the Jastrow factor. In Figure 2 we compare the evolution
of the monopole Q =

P
N

i

⌦
r2
i

↵
as a function of time for

30 fermions and !0 = 1 ! !f = 2 and g = 1, using the
parameterizations mentioned earlier. We observe that
the breathing mode and correlations are both accurately
reproduced with the tVMC method, thus validating our
approach.

B. Molecules in a laser field

We study the electronic optical response of a diatomic
molecule in an intense time-dependent laser field. The
electronic potential with NA atoms at positions {Ra}

Na
a=1

reads (in atomic units)

V (x, t) =
NX
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where we introduced the charge number Za and an ex-
ternal potential Vext(x, t) describing a linearly polarized
and spatially homogeneous electric field (see Ref. [10] and
Appendix F). Hatree-Fock is known to fall short in prop-
erly describing the dissociation curve of H2, especially
at larger distances [69]. Therefore, we will consider H2

separated at twice its equilibrium distance. In Fig. 3
we show the induced dipole moment for H2 modelled in
first and second quantization. The initial state of the
various approaches is their respective approximation to
the ground state H2, and therefore can differ depending

0 25 50 75 100 125 150 175 200 225

time

�1.5

�1.0

�0.5

0.0

0.5

1.0

1.5

2.0

D
ip
ol
e
(a
.u
.)

TDHF (STO-3g)
TDHF (cc-pVDZ)

ED (STO-3g)
ED (cc-pVDZ)

S+C+BF RBM (STO-3g)

FIG. 3. Time-dependent dipole moment of H2 in an intense,
time-dependent laser field modeled with an NQS and tVMC.
We show the effect of capturing correlations with a time-
dependent neural backflow (S+BF) transformation, compared
to a mean-field Slater determinant (S), as well as results ob-
tained in the STO-3g basis in second quantization (RBM).
We compare to predictions from TDHF and ED.

on the model. The ground state results are summarized
in Appendix F. In second quantization, even exact di-
agonalization (ED) does not provide the exact ground-
state energy since the accessible Hilbert space is limited
by the restricted basis set. The effect of correlations
(i.e. ED versus HF predictions) can be mainly observed
in oscillation amplitudes, as well as the interference be-
havior superimposed on the electric-field-induced oscil-
latory behavior. In comparison to TD-HF, tVMC with
tNQS using the same basis set reproduces the ED results,
thereby demonstrating that tNQS can accurately capture
the electron correlations, even in a limited basis set. In
first quantization in continuous space, we use a neural
network ansatz, inspired by PauliNet [53], using a mod-
ified version of the powerful particle-attention backflow
transformations recently introduced in Ref. [54] for appli-
cations to the homogeneous electron gas. The latter has
recently also found successful applications to quantum
materials [70] nuclear matter [71], and ultra-cold dilute
matter [72]. The details about the model are given in Ap-
pendix B 1. First, as a validation, we observe that tVMC
with a pure mean field Slater determinant reproduces the
predictions from TDHF in the same basis, albeit that
tVMC scales more favorably with the size of the basis
set, i.e. O(M)3 compared to O

�
M4
�

(see Appendix D
on scalability). However, by including a time-dependent
backflow, the time-evolution of the dipole changes by tak-
ing into account electron correlations that appear to have
a damping effect on the oscillation.

C. Quenched electronic quantum dot

Interest in time-dependent properties of quantum sys-
tems spans various domains, including correlated elec-
trons in metal clusters, quantum dots, and ultracold
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FIG. 4. The integrated R
2(t) error in Eq. (18) (top panel)

and pair correlation G
(2)(t) in Eq. (20) (bottom panel) as

a function of time for a fully polarized quantum dot with
N = 6 and subject to a quench (t) = 1 ! 2 at t = 0. We
compare with predictions using tVMC with a single Slater
determinant (S), a Slater-Jastrow model (S+J), and a Slater-
Jastrow-Backflow (S+J+BF) model.

hibit static and dynamic features governed by collective
modes [77–79]. Quantum dynamics serves as a diag-
nostic tool for exploring many-electron correlations [79–
81]. Coulomb interactions in semiconductor quantum
dots influence crucial optoelectronic properties [82–85]
and understanding the Coulomb-induced correlations is
vital for describing these properties [86]. This is espe-
cially pertinent in colloidal nanoplatelets operating in an
intermediate confinement regime, which exhibit intensi-
fied Coulomb interactions due to strong dielectric con-
finement [87–89].

We model the behavior of interacting electrons con-
fined in a harmonic well in two dimensions

V (x, t) =
NX

i=1

1

2
!2r2

i
+

NX

i<j

(t)

kri � rjk
, (9)

where ! is the trap frequency, and  > 0 is the interaction
strength [90]. The electrons propagate through a medium
( is related to the dielectric constant of the semicon-
ductor), and we consider their time-evolving state when
the ground state of the Hamiltonian with (t < 0) = 1
is subject to a quench in the medium, modeled by an
abrupt doubling of their effective interaction strength
(t � 0) = 2 at t = 0, while fixing the confining po-
tential ! = 1.

While one can again observe breathing modes in the
electric monopole (see Fig. 8 in Appendix G), we focus
here on observables that specifically highlight the cor-
relations in the system. To highlight the effect of cor-
relations in this system, we include the connected pair-
correlation function G(2) in Fig. 4, which isolates correla-
tion effects and is identically zero in the mean-field limit
(see Section VD for the definition). We observe that,
even though correlations do not have a quantitative effect
in the ground state, they significantly contribute shortly
after the quench and remain present throughout the time
evolution. In Fig. 4 we also show the integrated error
measure R2 introduced in Section V C to quantify the de-
gree to which the models satisfy the TDSE. We conclude
that a more expressive wave function also yields signifi-
cantly lower integration errors and is therefore closer to
the ground truth. The presence of correlations explains
the rapid increase in integration error for the mean-field
model in Fig. 4, where the latter does not capture the
strong correlations induced by the change in interaction
strength. Furthermore, allowing the nodal surface to
vary over time (using backflow transformations) yields
more accurate and truthful dynamics.

IV. CONCLUSIONS AND OUTLOOK

We have introduced a variational approach to capture
the dynamics of quantum many-electron systems, specif-
ically addressing the challenges posed by real-time ab
initio electronic structure theory. Our methodology in-
volves the use of correlated time-dependent variational
wave functions, which surpass the typically adopted
mean-field approximations. Specific functional forms we
adopted here include the time-dependent Jastrow func-
tion and backflow transformations to capture electronic
correlations. We discussed how to time-evolve the vari-
ational wave functions using the time-dependent varia-
tional Monte Carlo (tVMC).

We demonstrated the effectiveness of our approach
through applications to three distinct systems: the solv-
able harmonic interaction model, diatomic molecules in
intense laser fields, and a quenched quantum dot. In
the harmonic interaction model, we successfully repro-
duced the breathing mode induced by a trap quench,
underscoring the method’s accuracy in capturing cor-
related many-body system dynamics. Transitioning to
diatomic molecules in intense laser fields, our approach
demonstrated versatility in both first and second quan-
tization. In both cases, we demonstrated that tVMC
can be used to time-evolve expressive models such as
Neural Quantum States, as well as the more traditional
basis-expanded models. In first quantization, the incor-
poration of neural backflow transformations showcased
a promising avenue for simulating complex molecular
systems in external fields. Finally, our approach ex-
celled in predicting observables for the quenched quan-
tum dot, emphasizing the significance of capturing many-
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tional parameter velocities ✓̇,

NpX

k0

Gk,k0(t)✓̇k0(t) = �iFk(t), (10)

with the Quantum Geometric Tensor G (QGT) and the
energy gradients F given by

Gk,k0(t) =

⌧
@

@✓k
�(✓(t))

����
@

@✓k0
�(✓(t))

�
, (11)

Fk,k0(t) =

⌧
@

@✓k
�(✓(t))

����Ĥ(t)

�����(✓(t))
�
. (12)

B. Time-Dependent Variational Monte Carlo

Although MacLachlan’s and Dirac-Frenkel’s varia-
tional principle were originally introduced in conjunction
with mean-field states, one can generalize the approach to
incorporate many-body correlations. Therefore, we for-
mulate the variational time evolution using Monte Carlo
estimates to integrate the system over the exponentially
large Hilbert space, as we will demonstrate in this sec-
tion. We aim to capture the dynamics of the probability
amplitudes  (x, t) ⌘ hx| (t)i 2 C, which we parameter-
ize as �(x, ✓(t)) ⌘ hx|�(✓(t))i. Here, x represents a set of
continuous electron positions and spins, or an occupation
configuration in a given basis set. Since the Hilbert space
scales exponentially with the system size, we resort to
Monte Carlo estimates of the quantities in Eqs. (11) and
(12). The time-dependent variational principle in combi-
nation with Monte Carlo is referred to as time-dependent
Variational Monte Carlo (tVMC) [56, 69, 95]. For a given
trial wave function, the energy can be computed using
(we drop the time dependence to simplify the notation),

E = E
x⇠|�(x,✓)|2 [Eloc(x)] (13)

where we introduced the local energy Eloc(x) =
[Ĥ�](x,✓)
�(x,✓) .

Furthermore, by introducing the log derivative of the
wave function with respect to parameter ✓k: Ok(x) =
@✓k log�(x, ✓), we obtain the following estimators

Gk,k0 = E
x⇠|�(x,✓)|2 [O

⇤
k
(x)�Ok0(x)] , (14)

Fk = E
x⇠|�(x,✓)|2 [O

⇤
k
(x)�Eloc(x)] , (15)

where �Eloc(x) = Eloc(x) � E and �Ok(x) = Ok0(x) �
E
x0⇠|�(x0,✓)|2 [Ok(x0)]. We refer to Appendix A for more

details.

C. Integrated infidelity

We can measure the error induced by restriction in
the expressivity of the variational model in representing

| (t+ �t)i by introducing the residuals [51, 58]

r2(t) = D
2 (| (t+ �t)i , |�(✓(t+ �t))i) (16)

⇡ �t2
h
Var�(✓(t+�t))

⇣
Ĥ
⌘
+ ✓̇†G✓̇ + 2 Im

⇣
F †✓̇

⌘i

(17)

where D(| i , |�i) represents the Fubini-Study distance
between quantum states | i and |�i, and the last line is
obtained through a second-order consistent expansion in
✓̇ and Var 

⇣
Ĥ
⌘
= E

x⇠| |2 [E
⇤
loc

(x)�Eloc(x)]. Further-
more, we introduce the integrated fidelity

R2(t) =

Z
t

0
dt0r2(t0). (18)

D. Pair correlation function

To identify the contribution of beyond-mean-field cor-
relations, we introduce a pair-correlation function that
vanishes for pure mean field states. We introduce the
pair correlation function for a general state | i (with po-
sition vectors x 6= y 2 Rd, and assuming a fully polarized
system such that we can ignore spin)

g(2)(x,y) = h |�†(x)�(x)�†(y)�(y)| i /N

�h |�†(x)�(x)| i h |�†(y)�(y)| i /N 2

+ h |�†(x)�(y)| i h |�†(y)�(x)| i /N 2.
(19)

where N = h | i is the normalization, and where we
introduced the field creation and annihilation operators
{�†(x),�(x)} at position x. We define the fully inte-
grated pair correlations function as

G(2) =

Z
dxdyg(2)(x,y). (20)

We obtain the Monte Carlo estimator (see Appendix H
for a detailed derivation)

G(2) = N2E
x⇠| |2
x
0⇠| |2


 (r01, r2, ..., rN )

 (r1, r2, ..., rN )

 (r1, r02, ..., r
0
N
)

 (r01, r
0
2, ..., r

0
N
)
�

1

N

�
.

(21)

For a mean-field state, the pair-correlation function van-
ishes G(2)

⌘ 0.

V. CONCLUSIONS AND OUTLOOK

We have introduced a variational approach for cap-
turing the dynamics of quantum many-electron systems,
specifically addressing the challenges posed by real-time
ab initio electronic structure theory. Our methodology
involves the use of time-dependent variational wave func-
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FIG. 4. The integrated R
2(t) error in Eq. (18) (top panel)

and pair correlation G
(2)(t) in Eq. (20) (bottom panel) as

a function of time for a fully polarized quantum dot with
N = 6 and subject to a quench (t) = 1 ! 2 at t = 0. We
compare with predictions using tVMC with a single Slater
determinant (S), a Slater-Jastrow model (S+J), and a Slater-
Jastrow-Backflow (S+J+BF) model.

electrons in metal clusters, quantum dots, and ultra-
cold Fermi gases [76–80]. Strongly coupled systems ex-
hibit static and dynamic features governed by collective
modes [80–82]. Quantum dynamics serves as a diag-
nostic tool for exploring many-electron correlations [82–
84]. Coulomb interactions in semiconductor quantum
dots influence crucial optoelectronic properties [85–88]
and understanding the Coulomb-induced correlations is
vital for describing these properties [89]. This is espe-
cially pertinent in colloidal nanoplatelets operating in an
intermediate confinement regime, which exhibit intensi-
fied Coulomb interactions due to strong dielectric con-
finement [73–75].

The interaction and confining potential in this system
reads

V (x, t) =
NX

i=1

1

2
!2r2

i
+

NX

i<j

(t)

kri � rjk
, (9)

where ! is the trap frequency, and  > 0 is the inter-
action strength, related to the dielectric constant of the
semiconductor [90]. We consider the evolution of the elec-
tronic ground state of the Hamiltonian with (t < 0) = 1
after a quench in the medium, modeled by an abrupt dou-
bling of the effective interaction strength (t � 0) = 2 at
t = 0, while fixing the confining potential ! = 1.

While one can again observe breathing modes in the
electric monopole (see Fig. 8 in Appendix G), we focus
here on observables that specifically highlight the cor-
relations in the system. In particular, we include the
connected pair-correlation function G(2) in Fig. 4, which
isolates correlation effects and is identically zero in the
mean-field limit (see Section VD for the definition). We
observe that, even though correlations do not have a
quantitative effect in the ground state, they significantly
contribute shortly after the quench and remain present
throughout the time evolution. In Fig. 4 we also show the
integrated error measure R2, introduced in Section V C,
to quantify the degree to which the models satisfy the
TDSE. We conclude that a more expressive wave func-
tion also yields significantly lower integration errors and
is therefore closer to the ground truth. The presence
of correlations explains the rapid increase in integration
error for the mean-field model in Fig. 4, as the latter
does not capture the strong correlations induced by the
change in interaction strength. Furthermore, allowing
the nodal surface to vary over time (using backflow trans-
formations) yields more accurate and truthful dynamics.

IV. CONCLUSIONS AND OUTLOOK

We have introduced a variational approach to capture
the dynamics of quantum many-electron systems, specifi-
cally addressing the challenges posed by real-time ab ini-
tio electronic structure theory. Our methodology involves
the use of correlated time-dependent variational wave
functions, which surpass the typically adopted mean-field
approximations. In particular, we adopted here the time-
dependent Jastrow function and backflow transformation
to capture electronic correlations. We discussed how to
time-evolve the variational wave functions using the time-
dependent variational Monte Carlo (tVMC).

We demonstrated the effectiveness of our approach
through applications to three distinct systems: the solv-
able harmonic interaction model, diatomic molecules in
intense laser fields, and a quenched quantum dot. In
the harmonic interaction model, we successfully repro-
duced the breathing mode induced by a trap quench,
underscoring the method’s accuracy in capturing cor-
related many-body system dynamics. Transitioning to
diatomic molecules in intense laser fields, our approach
demonstrated versatility in both first and second quan-
tization. In both cases, we demonstrated that tVMC
can be used to time-evolve expressive models such as
Neural Quantum States, as well as the more traditional
basis-expanded models. In first quantization, the incor-
poration of neural backflow transformations showcased
a promising avenue for simulating complex molecular
systems in external fields. Finally, our approach ex-
celled in predicting observables for the quenched quan-
tum dot, emphasizing the significance of capturing many-
body correlations in the dynamics of strongly interacting
electronic systems. In conclusion, our variational time-
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FIG. 7. Time-dependent electric field applied to the H2 molecule.

Appendix F: Molecules: electric profile, ground states and integration error

For the H2 molecule, we use a laser profile of the form (see Fig. 7) [20]

E(t) = E
max sin (!t)⇥

8
>>>>><

>>>>>:

0 (t < 0)

t/T (0  t < T )

1 (T  t < 2T )

3� t/T (2T  t < 3T )

0 (3T  t)

(F1)

where T = 2⇡/!. The corresponding time-dependent potential reads

Vext(x, t) = �

NX

i=1

E(t) · ri (F2)

where E(t) = E(t)ez, with ez is the unit vector along the z-axis.

The real-time evolutions in this work start from the approximated ground state of some initial electronic Hamilto-
nian. We summarize the ground state energies obtained with VMC using the neural wave function models in Fig. 8,
and compare to results obtained with HF and FCI. We also provide the integration error of the neural backflow model
in Fig. 9 and compare to the integration error obtained with a pure mean-field approach in the STO-3g basis.

Appendix G: Quantum dot: monopole

Figure 10 depicts the electric monopole for the quantum dot system in the main text. We observe the breathing
modes of the electric monopole in Fig. 10. By comparing TD-HF and ED predictions, we conclude that the breathing
behavior strongly depends on the chosen basis set (determined by the cutoff Ec, see Appendix B 2), and whether
correlations are accounted for. Using tVMC, we are able to capture the electronic correlations by introducing a
time-dependent Jastrow factor and backflow transformations.

To obtain the TD-HF results in Fig. 10, we use the matrix elements in the Laguerre-Gauss basis in 2D in Eq. (B12)
from Ref. [127].
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quenched experiment as in Fig. 10, using the tre-tVMC ap-
proach with given order K. Between brackets, we indicate
the number of electrons and the time step: (N, �t⇥ 102). We
compare the results using the basis expanded Slater-Jastrow
model (S+J) with K = 2 TRE to a fully neural-network-based
wave function ansatz (NQS).
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as a function of time. We show the results obtained with the
NQS wave function for the 2d quantum dot with N = 18
electrons (see Fig. 5). In the top row, we show snapshots of
the single-body density ⇢(r) .

IV. DISCUSSION

We have introduced a variational approach to capture
the dynamics of quantum many-electron systems, specif-
ically addressing the challenges posed by real-time ab
initio electron dynamics. Our methodology involves the
use of correlated time-dependent variational wave func-
tions, which surpass the typically adopted mean-field ap-
proximations. In particular, we adopted here the time-
dependent Jastrow function and the backflow transfor-
mation to capture electronic correlations. We discussed
how to time-evolve the variational wave functions using
the time-dependent variational Monte Carlo (tVMC).

We demonstrated the effectiveness of our approach
through applications to three distinct systems: the solv-
able harmonic interaction model, diatomic molecules in
intense laser fields, and a quenched quantum dot. In
the harmonic interaction model, we successfully repro-
duced the breathing mode induced by a trap quench,
underscoring the method’s accuracy in capturing cor-
related many-body system dynamics. Transitioning to
diatomic molecules in intense laser fields, our approach
demonstrated versatility in both first and second quanti-
zation. In both cases, we demonstrated that tVMC can
be used to time-evolve expressive models such as Neural
Quantum States, as well as the more traditional basis-
expanded models. We also introduce a novel alternative
to tVMC, called tre-tVMC, that is particularly powerful
when using expressive neural-network wave functions in
continuous space. In first quantization, the incorporation
of neural backflow transformations showcased a promis-
ing avenue for simulating complex molecular systems in
external fields. Finally, our approach excelled in predict-
ing observables for the quenched quantum dot, empha-
sizing the significance of capturing many-body correla-
tions in the dynamics of strongly interacting electronic
systems. In conclusion, our variational time-dependent
wave function approach, as demonstrated across differ-
ent systems, presents a promising direction for advancing
real-time electron dynamics, offering a balance between
accuracy and computational efficiency in capturing the
intricate dynamics of quantum many-electron systems.

The presented work opens avenues for further explo-
ration and improvement. One avenue is the extension of
our approach to larger and more complex systems. Addi-
tionally, exploring more powerful ansatzes may provide
further improvements in accuracy and efficiency. Fur-
thermore, the applicability of our method to more diverse
quantum many-electron systems, including materials and
chemical reactions, could uncover new insights into their
dynamic behaviors.

V. METHODS

A. Variational time evolution with TDVP

The time evolution of a state |�(✓(t))i over a small
time interval �t described by the TDSE can be approx-
imated as

��� ̃(t+ �t)
E
=

⇣
1� i�tĤ

⌘
|�(✓(t))i. A varia-

tional approach projects
��� ̃(t+ �t)

E
back onto the trial

state manifold or requires finding the ✓(t + �t) that op-
timally approximates the state evolved in time. These
approaches are known as “time-dependent variational
principles” (TDVP). Various methods are available for
this projection and include the Dirac-Frenkel (DF) and
MacLachlan (McL) variational principles. In particu-
lar, McL reduces to DF for holomorphic wave function
parameterizations. However, in general, DF conserves
the energy of the system subject to time-independent
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as a function of time. We show the results obtained with the
NQS wave function for the 2d quantum dot with N = 18
electrons (see Fig. 5). In the top row, we show snapshots of
the single-body density ⇢(r) .

IV. DISCUSSION

We have introduced a variational approach to capture
the dynamics of quantum many-electron systems, specif-
ically addressing the challenges posed by real-time ab
initio electron dynamics. Our methodology involves the
use of correlated time-dependent variational wave func-
tions, which surpass the typically adopted mean-field ap-
proximations. In particular, we adopted here the time-
dependent Jastrow function and the backflow transfor-
mation to capture electronic correlations. We discussed
how to time-evolve the variational wave functions using
the time-dependent variational Monte Carlo (tVMC).

We demonstrated the effectiveness of our approach
through applications to three distinct systems: the solv-
able harmonic interaction model, diatomic molecules in
intense laser fields, and a quenched quantum dot. In
the harmonic interaction model, we successfully repro-
duced the breathing mode induced by a trap quench,
underscoring the method’s accuracy in capturing cor-
related many-body system dynamics. Transitioning to
diatomic molecules in intense laser fields, our approach
demonstrated versatility in both first and second quanti-
zation. In both cases, we demonstrated that tVMC can
be used to time-evolve expressive models such as Neural
Quantum States, as well as the more traditional basis-
expanded models. We also introduce a novel alternative
to tVMC, called tre-tVMC, that is particularly powerful
when using expressive neural-network wave functions in
continuous space. In first quantization, the incorporation
of neural backflow transformations showcased a promis-
ing avenue for simulating complex molecular systems in
external fields. Finally, our approach excelled in predict-
ing observables for the quenched quantum dot, empha-
sizing the significance of capturing many-body correla-
tions in the dynamics of strongly interacting electronic
systems. In conclusion, our variational time-dependent
wave function approach, as demonstrated across differ-
ent systems, presents a promising direction for advancing
real-time electron dynamics, offering a balance between
accuracy and computational efficiency in capturing the
intricate dynamics of quantum many-electron systems.

The presented work opens avenues for further explo-
ration and improvement. One avenue is the extension of
our approach to larger and more complex systems. Addi-
tionally, exploring more powerful ansatzes may provide
further improvements in accuracy and efficiency. Fur-
thermore, the applicability of our method to more diverse
quantum many-electron systems, including materials and
chemical reactions, could uncover new insights into their
dynamic behaviors.

V. METHODS

A. Variational time evolution with TDVP

The time evolution of a state |�(✓(t))i over a small
time interval �t described by the TDSE can be approx-
imated as
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state manifold or requires finding the ✓(t + �t) that op-
timally approximates the state evolved in time. These
approaches are known as “time-dependent variational
principles” (TDVP). Various methods are available for
this projection and include the Dirac-Frenkel (DF) and
MacLachlan (McL) variational principles. In particu-
lar, McL reduces to DF for holomorphic wave function
parameterizations. However, in general, DF conserves
the energy of the system subject to time-independent
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Bulk corr. electrons: 3D HEG
5

Large Systems.– For N = 54 particles, accurate re-
sults are obtained with the FCI method [34]. At this
system size, the energy di↵erences per particle are smaller
than for N = 14, suggesting size-consistency of our
Ansatz, provided that the FCI method is size consis-
tent as well. When compared to purely variational meth-
ods, we obtain significantly better ground-state energies
than FN-DMC and BF-DMC, especially at high densi-
ties. This is in stark contrast to the (FermiNet-based) ar-
chitecture of [27] (dubbed LiNet in the following), which
does not improve upon BF-DMC energies over the whole
density regime (see Fig. 2, bottom). At rs � 50, we
observe improved results using the MP-NQS with Gaus-
sian orbitals compared to plane-waves (see Fig. 2, bottom
panel, yellow line). This strongly suggests a transition
from a de-localized Fermi liquid to a localized crystalline
phase as expected from previous studies [35, 54]. To ana-
lyze finite size e↵ects, we also simulate a larger system of
N = 128 electrons at rs = 50, 110, 200, and confirm that
Gaussian orbitals lead to lower ground-state energies,
compared to the plane-waves for rs > 50 (see Supplemen-
tary Material). Furthermore, for rs = 110, 200 the crys-
talline character of the variational state can be clearly
seen in the radial distribution functions and correspond-
ing structure factors displayed in Fig. 3. The prominent
peak in the structure factor and the pronounced density
fluctuations in the radial distribution function up to the
maximum distance of L/2, indicate the crystalline nature
of the represented state. Note that these are absent for
rs = 50, suggesting a fluid state.

Conclusions.– We have introduced MP-NQS, a novel
NQS architecture that leverages MPNNs to build highly
expressive backflow coordinates. We demonstrate its
power on the HEG system, reducing the number of pa-
rameters by orders of magnitudes compared to state-of-
the-art NQS in continuous space while reaching at par or
better accuracy. We also show improvement upon state-
of-the-art BF-DMC results on large systems. The favor-
able scaling allows us to accurately simulate large peri-
odic electronic systems, previously inaccessible to state-
of-the-art NQS models. We increase the available system
sizes from N = 27 and N = 54 electrons in periodic sys-
tems [22, 23, 27] toN = 128 electrons in this work. Hence
we open the door to extrapolation methods to the ther-
modynamic limit for extended systems. Furthermore, we
reproduce the liquid-crystal phase transition of the HEG
around rs = 100, matching previous predictions on the
transition density [35, 54, 55], showing the MP-NQS ca-
pability to describe di↵erent phases of matter quantita-
tively better than previous studies of the HEG based on
neural quantum states [23]. In addition to the numerical
results, we also introduced an analytical argument, justi-
fying commonly adopted backflow transformations. Our
argument shows that a backflow transformation over a
reference state is su�cient to obtain the exact ground-
state wave function. It will be of particular interest to
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Figure 3. Spin-averaged radial distribution function (top)
and corresponding structure factor (bottom) for the HEG sys-
tem with N = 128 electrons at rs = 50, 110, 200. For rs = 50
we used plane-waves as reference state while for rs = 110, 200
Gaussian orbitals centered at BCC lattice sites were used. Er-
ror bars are smaller than the symbols. The crystal and liquid
benchmarks are obtained from [54] for rs = 110.

characterize the geometrical properties of these transfor-
mations and understand in what cases neural-network
parameterizations can e�ciently describe them.
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otherwise, we consider the trivial irreps of the symmetry
groups, i.e., the irrep with momentum k = (0, 0) of the group
of translations and the irrep A1 of the C4v group of rotations
and reflections.

Through this approach, we can optimize our network using
variational Monte Carlo (VMC) and stochastic reconfigura-
tion [20]. Hereby, we use Markov chain Monte Carlo to
generate Nsamples configurations S according to the probability
distribution |!(S )|2. With these samples, estimates of the
energy and gradients with respect to the variational parameters
can be obtained. The variational parameters are then updated
by first solving the linear equations Sx = g for x, where S
is the correlation matrix of the gradient of log !(S ) and g is
the vector of the gradients of the energy with respect to the
variational parameters [5,21]. When x is found, we use the
Adam optimizer with learning rate η to determine an update
of the variational parameters [22]. We iterate this procedure
until convergence is reached. For details of the optimization
procedure, see Appendix B.

C. Relation to other work

In previous work on conserving SU(2)-symmetry through
variational Ansätze in the context of VMC [14], one works
with configurations in the space of irreducible representa-
tions of subsystems. In particular, considering a 1D chain
for clarity, one chooses the basis set defined by the set of
all possible combinations { j1, . . . , jN }, where ji is the total
angular momentum of the first i spins. One could view this
Ansatz as applying a mapping from the space of angular
momenta to its probability amplitudes via a variational wave
function. The approach we outlined here adopts a completely
different viewpoint, where the mapping to sets of angular
momenta { j1, . . . , jN } is done in the variational wave function
itself. Adopting this viewpoint, our network considers spin
configurations S , and maps this to its probability amplitude
by building composite configurations { j1, . . . , jN } with well-
defined angular momenta in the Ansatz, and deciding on their
importance using variational parameters. This construction
allows to efficiently calculate local observables, since we
still have access to the spin configurations, in contrast to
the approach from Ref. [14], where one has to define local
observables in the space of angular momenta. Doing this can
become problematic in dimensions larger than one, where
operators in the space of angular momenta become increas-
ingly nonlocal. Another advantage is that access to the spin
configurations allows to efficiently include lattice symmetries
as shown in Eq. (5), as opposed to the previous work. Indeed,
in the previous approach, the action of an element of the
lattice symmetries does not map the { j1, . . . , jN } basis states
to another one, but rather to a nontrivial linear combination of
them. As we will discuss in the next sections, including lattice
symmetries can increase the accuracy of our wave functions
by orders of magnitude.

III. J1-J2 MODEL

The J1-J2 model is a prototypical model with frustrated
interactions. The Hamiltonian

Ĥ = J1

∑

⟨i j⟩
ŝi.ŝ j + J2

∑

⟨⟨i j⟩⟩
ŝi.ŝ j (6)

FIG. 2. Relative error on the ground state energy #E/E0 =
(E0,exact − E )/E0,exact of the J1-J2 model on a 4 × 4 lattice. We il-
lustrate the results for a model with rotation, translation, or reflection
symmetry imposed through Eq. (5) for jmax = 4. We also show the
effect of jmax = 2 for the translation symmetric model. Also shown
are the results for a model with all symmetries and only SU(2)
symmetry. The exact ground state energy E0,exact is obtained through
exact diagonalization.

contains a nearest-neighbor (J1) and next-nearest-neighbor
(J2) Heisenberg interaction term. Here, ŝi denotes the spin
operator at site i, and ⟨i j⟩ (⟨⟨i j⟩⟩) denotes the set of all nearest
(next-nearest) pairs. Note that both terms conserve SU(2)
symmetry, and therefore, the eigenstates are SU(2) symmetric
as well. In the limit of J2 → 0, the model exhibits a Néel-type
antiferromagnetic order, while in the limit of J1 → 0, a stripe-
type antiferromagnetic order is found. In the intermediate
regime where J2/J1 ≈ 0.5, the system is highly frustrated,
which makes this system a hard problem to solve by con-
temporary methods, and is thus widely used as a benchmark
for novel algorithms [23,24]. There are numerous conflicting
proposals with regard to the structure of the ground state, in-
cluding the plaquette valence-bond state [25,26], the columnar
valence-bond state [27,28] or a gapless spin liquid [29,30],
but a conclusive characterization of the phase diagram is still
missing.

IV. RESULTS

A. Effect of lattice symmetries

The Ansatz proposed in this work conserves SU(2) through
its architecture, while lattice symmetries are imposed through
Eq. (5). Therefore we start by investigating the effect of the
latter on the obtained ground state energy. We use our model
with a homogeneous hidden dimension τ = 8 for all layers
and angular momenta. We optimize our models through VMC
with learning rate η = 0.001 and Nsamples = 4096. Figure 2
shows the computed ground-state energy of the J1-J2 model at
different ratios J2/J1 on a 4 × 4 lattice with periodic bound-
ary conditions (PBC). We observe that lattice symmetries
improve the relative error by over two orders of magni-
tude. Especially the incorporation of translation and rotation
symmetry tend to result in the lowest ground-state energies.
Near J2/J1 = 1, where next-nearest-neighbor interactions

045123-4
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variance than the sampling scheme used in the actual p-ITE propagation. Operators are evaluated on neighbouring sites.

showing the technique also proves accurate when dealing
with o↵-diagonal operators. In both cases, the di↵er-
ence with METTS is hardly visible, thereby validating
the accuracy of our method in reconstructing thermal
states over a wide range of temperatures, even when the
underlying density matrices are non-trivial. In particu-
lar, one observes that the Ansatz correctly interpolates
between the infinite-T maximally mixed state and the
closed-system ground-state asymptotics.

Next, we carry out the real-time evolution of a ther-
mal state. To this aim, we first prepare the thermal state
of the Hamiltonian Ĥ0 = Ĥ(1.5hc, 0) at several temper-
atures of interest. The system is subsequently evolved
according to Ĥt = Ĥ(1.5hc, J), simulating the sud-
den switching on of a parity-breaking longitudinal field.
The latter is obtained by evolving the finite-temperature
(doubled) state with the thermofield Hamiltonian Ĥth

t

defined in accordance with Eq. (4). In Fig. 3, we show
the results for 2D lattices of size 4⇥4 and 6⇥6, respec-
tively (see Supplementary Material [66] for simulations
on a 1D chain of 10 spins, and a comparison with exact
diagonalization). Our simulations faithfully reproduce
the oscillations induced by the longitudinal external field
onto the system, originally in an orthogonally polarized
paramagnetic phase. For these experiments, we use the
RBMO architecture since it is holomorphic and therefore
results in stable time evolution with tVMC. For ARNNO,
implicit time evolution techniques such as the one intro-
duced in Ref. [37] prove valuable. We also show predic-
tions from METTS and the corresponding variance. We
conclude that our method can reliably capture real-time
dynamics for a wide range of temperatures. Especially
as the temperature decreases, where our results become

increasingly accurate since the variance on the Monte
Carlo estimators in tVMC decreases, thereby requiring
fewer samples to obtain a similar accuracy in the energy
gradients.

Discussion and outlook.— We introduced the frame-
work of thermofield dynamics to capture the real-time
evolution of thermal ensembles using neural network
quantum states. We demonstrated its accuracy and scal-
ability on the Ising model with a longitudinal and trans-
verse field. First, we solve the problem of accurately
preparing a neural density operator at a given tempera-
ture. We do this by introducing both novel autoregressive
neural network operators (ARNNO) and a stable implicit
imaginary-time evolution technique (p-ITE) that allows
one to cool down generic neural density operators. Un-
like the POVM-based formalism, our variational thermal
states are guaranteed to be positive semi-definite, and,
therefore, physical. Within the thermofield formalism,
we perform real-time evolution of these thermal neural
density operators and are able to scale our simulations
beyond system sizes accessible with exact methods. Since
the generality of our approach, in principle, allows one to
build neural density operators from any neural quantum
architecture, we foresee many extensions. This should
prove useful in simulating electronic systems [80], with
application in quantum chemistry, material science, and
condensed matter; and may result in a better understand-
ing of temperature dependence of analog quantum simu-
lators and the influence of environmental noise on digital
quantum devices.

We thank Alessandro Sinibaldi for many useful discus-
sions. This work was supported by Microsoft Research,
by SEFRI under Grant No. MB22.00051 (NEQS - Neural
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X̂L in Fig. 5(c). Before the onset of the topologically
ordered phase around t = 2.2 µs, we observe that |hX̂Li|
and its rotated counterpart |hẐ(1)

L X̂LẐ
(j)
L i| qualitatively

di↵er. In contrast, at later times when the system ex-
hibits topological order, the qualitative behavior of all
curves agrees for all realizations of the logical operator
ẐL defined on any of the tested topologically equivalent
paths. We find that the further apart the operators Ẑ

1
L

and Ẑ
j
L are, the poorer the agreement. This allows us

to confirm that the operators approximately respect the
Pauli algebra at small distances and thus can be con-
sidered appropriate logical operators. Deviations in the
expectation value of these observables are again due to
defects.

The analysis conducted in this section is a striking il-
lustration of the strengths of our method, namely (i) its
flexibility in terms of geometry and topology, and (ii)
its ability to directly measure string operators, whether
diagonal or not. A thorough study of the anyonic proper-
ties of topologically ordered states by evaluating products
of non-commuting string operators should entail a pro-
hibitive overhead for experiments, which would require
subsequent local-basis rotation.

C. Entanglement entropy
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FIG. 6. Dynamics of the topological entanglement entropy
for various total preparation times T . The dotted line indi-
cates the value obtained for the RVB form of the state (A1),
corresponding to � = ln(2). The inset displays the highest �

reached for each simulation. The simulation with total time
T = 2.5 µs corresponds to the experimental protocol from [36].
TEEs and their errors were obtained from 1024 bootstrap es-
timates [123].

As discussed in Sec. VA, while the FM order param-
eters are good indicators of QSL-like behavior, they are
ill-defined outside of this regime. Furthermore, the values
reached by the string operators P̂ and Q̂ were found to

exhibit a substantial dependence on the volume enclosed
by the loop [101], raising questions about the existence
of a genuine long-range order extending across the entire
system. This issue can be addressed through the value
of the topological entanglement entropy (see Sec. VC),
which can unambiguously confirm the presence of topo-
logical order and its nature.
We time evolve the system of N = 219 Rydberg atoms

according to the dynamical preparation protocol intro-
duced in Ref. [36] (see App. C for details on the proto-
col), matching its geometry, topology and system size,
and for various preparation times, in particular that of
the experiment T = 2.5 µs. Using Eq. (7), we estimate
the entanglement entropy and further measure the TEE
using the Kitaev-Preskill prescription [34] as defined in
Eq. (2) for the tripartititon depicted in Fig. 1. The results
in Fig. 6 show no TEE for most of the time evolution, up
to t = 0.9T = 2.25 µs, confirming the absence of topolog-
ical order in the trivial phase at low �. At later times,
the system transitions to a finite TEE for t & 2.25 µs,
attaining a maximal value of � ⇡ 0.479(2) at t ⇡ 2.44 µs,
corresponding to �/⌦0 ⇡ 6. This confirms the presence
of topological order in the prepared state. However, we
also observe that the system never reaches the charac-
teristic value � = ln(2) corresponding to Z2 topological
order. Thus, the final state is not a pure QSL.

As the topology of the lattice can ultimately a↵ect the
final state, we study in App. F its influence on the TEE.
Indeed, as previous studies considered lattices with dif-
ferent geometries (cylinder or torus but no lattice with
open boundaries), our usage of a lattice with open bound-
ary conditions, as relevant in experiments, could have af-
fected the topological order of the system. We thus ver-
ify that the topology of the lattice (boundary condition,
genus, size) is not a significant source of the disparity be-
tween the TEE of the prepared state and that of an RVB.
In particular, none of the alternative lattices contributed
to an improvement in the value of �.

As discussed in Sec. III A, it has been shown [36, 101,
103] that systems analogous to the one simulated here,
but with a finite range of the Rydberg potential, possess
a QSL ground state for some values of the parameter
�. Therefore, for such systems, a perfectly adiabatic
preparation T ! 1 should ensure the maximal value of
� = ln(2). However, the case presented here di↵ers from
previous analyses by considering the complete physical
Hamiltonian (3), where the presence of long-range inter-
actions destabilizes the QSL [101, 103, 109]. Hence, as
discussed in Sec. II, increasing the total evolution time
does not guarantee a higher TEE. Instead, there should
be an optimal preparation time T for which the final state
is as close as possible from the targeted QSL.

Since the TEE provides a precise global indicator of
topological order, in Fig. 6 we assess its dependence on
adiabaticity by comparing the obtained � as a function
of the evolution time T of the protocol. We find a finite
TEE for t & 0.9T that ensures the presence of topological
order across all examined cases. We observe that for

3

class as product states with zero entanglement, their en-
tropy follows an area-law scaling with no o↵set (� = 0 in
Eq. (1)). In contrast, for topologically ordered states, no
such transformation exists (i.e. no local unitary can map
the wave function into a pure product state with zero en-
tropy), thus the entanglement is long range. The absence
of this local deformation results in a constant shift �� in
the entanglement entropy, translating the impossibility
of obtaining a zero-entropy state smoothly.

The TEE serves as a direct indicator of the spe-
cific kind of topological order one is faced with. The
anyonic properties define the total quantum dimension
D =

pP
a d

2
a, where da denotes the local dimension of

particles within the superselection sector a [34, 35]. The
corresponding TEE then reads � = ln(D). The present
study focuses on characterizing a QSL with Z2 topo-
logical order, which exhibits four superselection sectors
of abelian anyons. Consequently, it is characterized by
� = ln

�p
4
�
= ln(2) [33, 94, 95].

Various approaches have been proposed to extract the
TEE numerically [34, 35], where the general concept is
to consider multiple domains in the lattice, either touch-
ing or overlapping. By subtracting the entropy values
of the combined system from the entropy of the sub-
regions, any dependence on boundary lengths, or even
corner contributions, cancel out exactly, allowing for a
direct determination of the TEE. We adopt the Kitaev-
Preskill prescription [34], where three regions A, B and
C converge at a triple intersection point. These regions
collectively form a disk. The TEE is then expressed as
the following linear combination

�� = SA + SB + SC � SAB � SBC � SCA + SABC , (2)

where SXY ... denotes the entanglement entropy of the
composite regionX[Y [. . . . This approach o↵ers several
advantages, including the absence of linear extrapolation
to eliminate area-law terms. Additionally, it entails solely
contractible entanglement boundaries (provided that no
partition intersects a physical boundary), eliminating the
reliance on the state decomposition (see Ref. [96], where
the TEE is contingent upon the minimal-entropy state
decomposition of the wave function).

III. RYDBERG QUANTUM SIMULATOR

We consider a physical system made of a two-
dimensional array of Rydberg atoms placed at the edges
of a Kagome lattice, as introduced in Ref. [36] and de-
picted in Fig. 1. Each atom can either be in its elec-
tronic ground state |gi or excited to |ri via an opti-
cal transition with the Rabi frequency ⌦0. Rydberg
atoms interact through a repulsive van der Waals poten-
tial V (r) = V0/r

6 once excited [97, 98]. Due to this in-
teraction, atoms closer than a characteristic distance Rb

cannot be excited at the same time. This phenomenon is
known as Rydberg blockade and the corresponding radius

is defined as Rb = (V0/⌦0)1/6. The Hamiltonian for such
a system is given by [99, 100]

Ĥ(t) = �⌦(t)

2

X

i

�̂
x
i ��(t)

X

i

n̂i+
X

i<j

V (rij)n̂in̂j , (3)

where �̂
x
i = |riihgi| + |giihri| and n̂i = |riihri|. Here, the

Rabi frequency ⌦(t) governs the strength of the coher-
ent driving of the Rydberg transition whereas the time-
dependent detuning �(t) serves as a chemical potential
controlling the amount of excitations in the system.

In the following, we set the lattice spacing and Rabi
frequency to respectively a = 3.9 µm and ⌦0 = 2⇡ ⇥
1.4MHz, such that Rb = 2.4a, corresponding to a block-
ade up to the third nearest neighbor, as illustrated in
Fig. 1. Applied to the Kagome lattice with such settings,
this constraint implies that at most one atom per trian-
gle and per vertex is likely to be excited. Therefore, the
physics of this system may be faithfully described as a
dimer model. We identify [101] an atom in its ground
state with the absence of a dimer on that edge |gi = | i
and an atom in its excited state with the presence of a
dimer |ri = | i, yielding, for example, |rggi =

�� ↵
on

a triangle.

C
B
A

Rb

FIG. 1. Lattice used in the experiment. The red circle rep-
resents the blockade radius Rb set during the process. The
green parallelogram describes the size of the lattice used for
exact simulations in Sec. IVB. Subsets A, B, and C indicate
the tripartition considered to estimate the topological entan-
glement entropy in Sec. VC.

A. Topological state preparation on a Rydberg
device

Recent studies [101–106] have demonstrated that trun-
cated versions of the Rydberg Hamiltonian (3) exhibit
a QSL ground state within a certain range of the de-
tuning parameter �. Specifically, with exactly one
dimer per vertex, the state manifests as a coherent su-
perposition of compact dimerizations, akin to the RVB
state [20, 107, 108]. However, since these simplified mod-
els only consider interactions up to the fourth neighbor,
they entirely neglect the inherently long-range nature of
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