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Today’s Talk

Part I – Function Space Optimization for SciML

Discretize function space algorithms in the tangent space of a neural network ansatz1

• Develop optimizers that provably mimic function space dynamics

• Design new algorithms and understand existing ones within this framework

Part II – Function Space Optimization at Scale

Scale the function space algorithms to millions of parameters2

• Leverage the Kronecker structure of linear layer Jacobians to approximate curvature
matrices

1J. Müller and M. Zeinhofer (2024). “Position: Optimization in SciML Should Employ the Function Space Geometry”. In: Forty-first International
Conference on Machine Learning.

2F. Dangel, J. Müller, and M. Zeinhofer (2024). “Kronecker-Factored Approximate Curvature for Physics-Informed Neural Networks”. In: Advances in
Neural Information Processing Systems.
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Scientific Machine Learning

When referring to Scientific Machine Learning (SciML) we mean:

• Operator Learning3

• Variational Monte Carlo for Schrödinger’s equation with NN ansatz4

• PINNs, Deep Ritz, etc.5

• Anything involving PDEs and neural networks

Observation

Introducing PDEs to objective functions complicates neural network training drastically.

3Z. Li, N. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya, A. Stuart, and A. Anandkumar (2021). “Fourier Neural Operator for Parametric
Partial Differential Equations”. In: International Conference on Learning Representations.

4D. Pfau, J. S. Spencer, A. G. Matthews, and W. M. C. Foulkes (2020). “Ab Initio Solution of the Many-Electron Schrödinger Equation with Deep
Neural Networks”. In: Physical Review Research 2.3, p. 033429.

5M. Raissi, P. Perdikaris, and G. E. Karniadakis (2019). “Physics-Informed Neural Networks: A Deep Learning Framework for Solving Forward and
Inverse Problems Involving Nonlinear Partial Differential Equations”. In: Journal of Computational Physics 378, pp. 686–707.
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Optimization in SciML is a Challenge

Figure: Illustration of neural network wavefunction optimization6 and PINN optimization7.

Proposition

Abandon first-order optimization. Exploit geometry in function space.
6R. Li et al. (2024). “A computational framework for neural network-based variational Monte Carlo with Forward Laplacian”. In: Nature Machine

Intelligence, pp. 1–11.
7J. Müller and M. Zeinhofer (2023). “Achieving High Accuracy with PINNs via Energy Natural Gradients”. In: International Conference on Machine

Learning.
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Geometry in Function Space vs Paramter Space8

u 7→ E(u)
“Function Space”

θ 7→ L(θ) = E(uθ)
“Parameter Space”

8H. Li, Z. Xu, G. Taylor, C. Studer, and T. Goldstein (2018). “Visualizing the loss landscape of neural nets”. In: Advances in neural information
processing systems 31.
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Abstract Function Space Optimization9

Informal Roadmap: “First Optimize, Then Discretize”

Given: “a SciML problem” and a neural network ansatz. We propose:

(i) Continuous Formulation: Formulate minimization/saddle point/... problem in a
Hilbert space H

E : H → R.

(ii) Optimize: Decide for an appropriate iterative algorithm in function space H

uk+1 = uk + dk, k = 0, 1, 2, . . .

(iii) Discretize: Project update directions on the tangent space of neural network ansatz.

9J. Müller and M. Zeinhofer (2024). “Position: Optimization in SciML Should Employ the Function Space Geometry”. In: Forty-first International
Conference on Machine Learning.
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Recap

Newton’s Method for Minimization in Function Spaces

For (general) objective E : H → R do second-order Taylor expansion (in function space)

E(u+ d) ≈ E(u) +DE(u)d+
1

2
D2E(u)(d, d).

Explicitly minimize in the variable d:

d = u−D2E(u)−1[DE(u)]

• Think of the expression D2E(u)−1[DE(u)] as solving a PDE10.

10The Euler-Lagrange equations of the Taylor expansion of E.
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Newton: Continuous Formulation

• Suppose we aim to solve Poisson’s equation

−∆u = f in Ω,

u = g on ∂Ω

• Reformulate as a minimization problem11

min
u∈H2(Ω)

E(u) =
1

2
∥∆u+ f∥2L2(Ω) +

1

2
∥u− g∥2L2(∂Ω)

• Ignore neural network ansatz classes.

11A formulation as a root finding problem or a variational formulation make sense, too.
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Newton: Optimize

• For the quadratic minimization problem

u∗ = argminu∈H2(Ω)E(u) =
1

2
∥∆u+ f∥2L2(Ω) +

1

2
∥u− g∥2L2(∂Ω)

• Newton’s method in function space has one step convergence

u∗ = u−D2E(u)−1[DE(u)]

= u+ (u∗ − u)︸ ︷︷ ︸
=d

.

Goal

Discretize such that we follow the optimal step d = u∗ − u?
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Newton: Discretize I – Bilinear Forms

Question

How to discretize the Newton step D2E(u)−1[DE(u)]?

• D2E(u) : H2(Ω)×H2(Ω) → R is a bilinear form:

D2E(u)(v, w) =

∫
Ω
∆v∆w dx+

∫
∂Ω
vwds

• DE(u) : H2(Ω) → R is a linear functional:

DE(u)(v) =

∫
Ω
(∆u+ f)∆v dx+

∫
∂Ω

(u− g)v ds

• The expression D2E(u)−1(DE(u)) means: Find v such that

D2E(u)(v, w) = DE(u)(w), for all w ∈ H2(Ω)
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Newton: Discretize II – Galerkin Methods

Question

How to discretize an equation of the form: D2E(u)(v, w) = DE(u)(w), for all w?

• Choose basis functions v1, . . . , vn ∈ H2(Ω) and transfer to a matrix equation:

Gij = D2E(u)(vj , vi), bi = DE(u)(vi)

• Solve the matrix equation
Gα = b

• Under suitable conditions, v =
∑n

i=1 αivi is an approximate solution.

Naming convention

Discretizing a bilinear form with a finite dimensional vector space is a Galerkin Method.
12



Newton: Discretize III – Galerkin in Tangent Space

• Given a neural network ansatz {uθ | θ ∈ Θ}, as basis function choose

∂θ1uθ, . . . , ∂θpuθ

• Discretize with a Galerkin ansatz using the basis functions ∂θ1uθ, . . . , ∂θpuθ:

G(θ)ij = D2E(uθ)(∂θjuθ, ∂θiuθ), ∇L(θ)i = DE(uθ)(∂θiuθ)

• This yields an optimization algorithm:

θk+1 = θk − ηkG(θk)
†∇L(θk).

• If E(u) = 1
2∥∆u+ f∥2L2(Ω) +

1
2∥u− g∥2L2(∂Ω) we get:

G(θ)ij =

∫
Ω
∆∂θiuθ∆∂θjuθ dx+

∫
∂Ω
∂θiuθ∂θjuθds
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This Yields a Highly Efficient Method12

θk+1 = θk − ηkG(θk)
†∇L(θk), k = 0, 1, 2 . . .

G(θ)ij =

∫
Ω
∆∂θiuθ∆∂θjuθ dx+

∫
∂Ω
∂θiuθ∂θjuθds

12J. Müller and M. Zeinhofer (2023). “Achieving High Accuracy with PINNs via Energy Natural Gradients”. In: International Conference on Machine
Learning. 14



L2 Gradient Flow for Rayleigh quotient: Cont. Form

• Suppose we want to minimize the Rayleigh quotient

R(ψ) =
⟨Hψ,ψ⟩
⟨ψ,ψ⟩

,

where H is the Hamiltonian (or any symmetric PDE operator).

• Rewrite the problem using ψ̃ = ψ/∥ψ∥L2 as

R̃(ψ̃) = ⟨Hψ̃, ψ̃⟩

• The transformation ψ/∥ψ∥L2 is for mathematical convenience.
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L2 Gradient Flow for Rayleigh quotient: Optimize

• Do L2 gradient flow with explicit Euler discretization on R̃

ψ̃k+1 = ψ̃K − ηkT
−1(DR̃(ψ̃k)),

• T : L2 → (L2)∗ is the Riesz isometry13 of L2

T (ψ)(ϕ) = ⟨ψ, ϕ⟩

• DR̃(ψ̃)ϕ = ⟨Hψ̃, ϕ⟩ is the Fréchet (functional) derivative of R̃.

13Can be viewed & discretized as bilinear form
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L2 Gradient Flow for Rayleigh quotient: Discretize

• The neural network ansatz and tangent space/Galerkin space are

{ψθ/∥ψθ∥L2 | θ ∈ Θ}, span{∂θ1
(

ψθ

∥ψθ∥

)
, . . . , ∂θP

(
ψθ

∥ψθ∥

)
}

• Discretizing the Riesz map T yields

Fij = T (∂θi (ψθ/∥ψθ∥))(∂θj (ψθ/∥ψθ∥)) = ⟨∂θi (ψθ/∥ψθ∥) , ∂θj (ψθ/∥ψθ∥)⟩

• Discretizing the functional derivative DR̃ yields the gradient of the loss
L(θ) = R(ψθ)

• The final algorithm is θk+1 = θk − ηkF
†∇L(θk)

Fact

One can compute that this is stochastic reconfiguration.
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Translation: Function Space to Parameter Space

We can carry out the previous reasoning for different function space optimization
methods14

Function Space Parameter Space Name in Literature

Newton Generalized Gauss-Newton ENGD15

Gradient Descent Natural Gradient Descent16 —
Lagrange-Newton Competitve Gradient Descent17 CPINNs18

Gauss-Newton Gauss-Newton GNNGD19

14J. Müller and M. Zeinhofer (2024). “Position: Optimization in SciML Should Employ the Function Space Geometry”. In: Forty-first International
Conference on Machine Learning.

15J. Müller and M. Zeinhofer (2023). “Achieving High Accuracy with PINNs via Energy Natural Gradients”. In: International Conference on Machine
Learning.

16S.-I. Amari (1998). “Natural Gradient Works Efficiently in Learning”. In: Neural Computation 10.2, pp. 251–276.
17F. Schäfer and A. Anandkumar (2019). “Competitive gradient descent”. In: Advances in Neural Information Processing Systems 32.
18Q. Zeng, S. H. Bryngelson, and F. T. Schaefer (2023). “Competitive Physics Informed Networks”. In: International Conference on Learning

Representations.
19A. Jnini, F. Vella, and M. Zeinhofer (2024). “Gauss-Newton Natural Gradient Descent for Physics-Informed Computational Fluid Dynamics”. In:

arXiv preprint arXiv:2402.10680.
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A General Class of Minimization Algorithms

• Many optimization methods are of the form:

uk+1 = uk + T−1
uk

[DE(uk)]

where Tk is a linear, continuous, bijective map Tuk
: H → H∗.

• Gradient Descent, Newton, Gauss-Newton, Lagrange-Newton, ...

• Assumption: Tuk
is coercive, i.e.,

⟨Tuk
v, v⟩ ≥ α∥v∥2H

for some α > 0.

19



Projection Theorem

Theorem

For the discretized algorithm θk+1 = θk − ηkG(θk)
†∇L(θk) it holds

uθk+1
= uθk − ηkΠuθk

[T−1
uθk

(DE(uθk))]︸ ︷︷ ︸
=dk

+ϵk

where Πu denotes the Galerkin projection onto the tangent space. The term ϵk
corresponds to an error vanishing quadratically in the step and step size length

ϵk = O(η2k∥G(θk)†∇L(θk)∥2).

Proof.

Taylor expansion & Céa’s Lemma.
20



Visualization of the Projection Theorem

uθ − u⋆ Newton F-Space Newton P-Space GD

uθ − u⋆ GN F-Space Newton F-Space Newton P-Space GD

21
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The Price of Non-local Ansatz Functions

Recall the Structure of the ENGD Matrix

In every step of optimization the following matrix needs to be assembled and inverted

G(θ)ij = D2E(uθ)(∂θiuθ, ∂θjuθ), i, j = 1, . . . , p.

For neural network ansatz functions the matrix is dense, rank deficient and ill-conditioned.

• A direct solve works well for small networks.

• Naive application is doomed to fail, already for networks of modest size, say p > 104

trainable parameters.

23



What are our Options?

• Matrix-free solution methods for the system G(θ)d = ∇L(θ).
- The matrix vector-product G(θ)v can be computed at comparable cost to the gradient
∇L(θ)20, 21, hence use CG.

- Drawback: CG iterates long due to ill-conditioning of G(θ).

• Derive cheap-to-invert approximations.

- Derivatives of linear network layers yield Kronecker structure22. Leverage to build an
approximation of G(θ)!

- The details fill the remaining talk.

• Combine both ideas, i.e., use preconditioned CG.

20N. N. Schraudolph (2002). “Fast curvature matrix-vector products for second-order gradient descent”. In: Neural computation 14.7, pp. 1723–1738.
21A. Jnini, F. Vella, and M. Zeinhofer (2024). “Gauss-Newton Natural Gradient Descent for Physics-Informed Computational Fluid Dynamics”. In:

arXiv preprint arXiv:2402.10680.
22J. Martens (2020). “New Insights and Perspectives on the Natural Gradient Method”. In: The Journal of Machine Learning Research 21.1,

pp. 5776–5851.
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Kronecker-Factor Approximation

• We discard cross-interactions between layers and use a Kronecker Approximation23:

G(θ) ≈ diag(G(1), . . . , G(L))

≈ diag(A(1) ⊗B(1), . . . , A(L) ⊗B(L)).

• Use the property of Kronecker product

(A⊗B)−1 = A−1 ⊗B−1

• Ignoring bias terms, for layer l mapping from Rn → Rm the matrix G(l)(θ) is of size
(nm, nm) but the Kronecker factors are of size

A(l) ∈ Rn×n, B(l) ∈ Rm×m

23We omit the θ dependency for brevity only.
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Where does the Kronecker Structure Come From?

Structure of ENGD Matrix

Ignoring boundary terms, one can show that the ENGD matrix for Poisson is

G(l)(θ) =
1

NΩ

NΩ∑
n=1

Jθ(l) ∆uθ(xn)
⊤ Jθ(l) ∆uθ(xn)

• Key for Kronecker factors: Jacobian of θ 7→ θx, where θ is weight matrix

Jθ(θx) = x⊤ ⊗ Id

• Need: children of θ(l) in computational graph of θ(l) 7→ ∆uθ(xn).

26



Taylor Mode alias Forward Laplacian24 Graph

θ(1) . . . θ(L)

x = z(0) z(1) z(2) . . . u = z(L)

I = ∇z(0) ∇z(1) ∇z(2) . . . ∇u = ∇z(L)

0 = ∆z(0) ∆z(1) ∆z(2) . . . ∆u = ∆z(L) L(θ)

θ(l) 7→ ∆uθ(x) = [(z(l),∇z(l),∆z(l)) 7→ ∆uθ(x)] ◦ [θ(l) 7→ (z(l),∇z(l),∆z(l))]

24R. Li et al. (2024). “A computational framework for neural network-based variational Monte Carlo with Forward Laplacian”. In: Nature Machine
Intelligence, pp. 1–11. 27



The Full K-FAC Approximation

Exact block of the ENGD matrix of a Laplace operator

G
(l)
Ω (θ) =

1

N

N∑
n=1

S∑
s=1

S∑
s′=1

Z(l−1)
n,s Z

(l−1)⊤
n,s′ ⊗ g(l)n,sg

(l)⊤
n,s′ .

K-FAC for the ENGD matrix of a Laplace operator

G
(l)
Ω (θ) ≈

 1

NS

N,S∑
n,s=1

Z(l−1)
n,s Z(l−1)

n,s

⊤

⊗

 1

N

N,S∑
n,s=1

g(l)n,sg
(l)
n,s

⊤

 =: A
(l)
Ω ⊗B

(l)
Ω

Z
(l)
n,1 := z(l)n , Z

(l)
n,2 := ∂x1z

(l)
n , . . . , Z

(l)
n,1+d = ∂xd

z(l)n , Z
(l)
n,2+d := ∆z(l)n

g(l)n,s := J
Z

(l)
n,s

∆un
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Further Details & Generalizations

• The K-FAC approximation works for more than just the Poisson equation:
• general nonlinear PDEs using PINN formulation
• Variational formulations (deep Ritz)
• Neural Operators? Requires more work.

• Typically combined with

- Trust-region methods for step-size choice
- Exponential moving average for K-FAC-matrices
- Infrequent updates of the K-FAC-matrices
- Momentum on the natural gradient

• Find all details in the pre-print25.

25F. Dangel, J. Müller, and M. Zeinhofer (2024). “Kronecker-Factored Approximate Curvature for Physics-Informed Neural Networks”. In: Advances in
Neural Information Processing Systems.
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Poisson Equation Two Dimensions
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Heat Equation Equation (4+1) Dimensions
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High Dimensional Poisson Equation

100 101 102 103

Time [s]

10−3

10−1

101

L
2

er
ro

r

5d Poisson, D = 116,865

100 101 102 103

Time [s]

10−3

10−1

10d Poisson, D = 118,145

100 102 104

Time [s]

10−2

10−1

100

100d Poisson, D = 1,325,057

SGD Adam Hessian-free LBFGS KFAC KFAC*

33



Discussion

+ The K-FAC approximation allows to scale natural gradient methods to millions of
parameters.

+ Even preliminary numerical experiments compare favorable to established optimizers.

+ The approximation generalizes to other PDEs (see pre-print26 for details).

- The numerical experiments are preliminary, more equations need to follow.

- The K-FAC approximation is architecture dependent and complicated to handle.

26F. Dangel, J. Müller, and M. Zeinhofer (2024). “Kronecker-Factored Approximate Curvature for Physics-Informed Neural Networks”. In: Advances in
Neural Information Processing Systems.
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When is the Functional Viewpoint Useful?

• We discussed difficulty of NN optimization for loss functions including PDE
operators.

• Infinite dimensional algorithms can exploit geometric structure.

• Obtain an algorithm by Galerkin discretization in tangent space.

• Scalability can be non-trivial.

When can this be useful?

The problem possesses a continuous formulation & contains PDE terms.

When does it not help?

First order methods are successful e.g., supervised deep learning applications.
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